eZ Publish 4.x

Technical Manual

©1999 - 2012 eZ Systems AS

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License,Version 1.2 or any later version published by the Free Soft-
ware Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license can be downloaded from http://www.gnu.org/copyleft/fdl.html.

Corrections and/or suggestions might be sent to info®@ez.no.

This PDF file is generated automatically from the online documentation available at
http://doc.ez.no.

This version was generated on November 13, 2012.

Contents

1
1.1

1.2

1.3

1.4
1.5

1.6
1.7

1.8

2.1

2.2

Installation 25
Normal installation 27
1.1.1 Requirements for doing a normal installation 28
1.1.2 Installing eZ Publish on a Linux/UNIX based system 32
1.1.3 Installing eZ Publishon Windows 36
Manual installation e 39
1.2.1 Requirements for doing a manual installation 40
1.2.2 Manual installation on a Linux/UNIX based system 41
1.2.3 Manual installation on Windows 42
1.2.4 Manual configuration of eZPublish. 43
Automated installation oo 0oL 49
1.3.1 Requirements for doing an automated installation 50
1.3.2 Automated installation of eZPublish 51
Thesetupwizard. i i e e e 54
Virtual hostsetup e 69
1.5.1 eZJSCorerewriterules 72
1.5.2 Virtualhostexample 74
RemovingeZPublish 77
EXtensions o v it ittt i e e e e 79
1.7.1 Extractingthefiles 80
1.7.2 Activating theextension 82
Troubleshooting e 84
Concepts and basics 86
The internal structure of eZ Publish 87
2.1.1 Directory StrUCLUIE . . « « v v v v v v v e e e e e e e e e e e e e e e e 89
Contentand design i i i i i i i i e e 91

Contents 3

221 StOTage i e 93

2.3 Content Management v v v v v vt b e e e e e e e e e e e 94
2.3.1 DatatyPes . . v v v v e 96
2.3.2 Thecontentclass.o 97
2.3.3 Classattributes 101
2.3.4 Thecontentobject o 104
2.3.5 Multiple languages e e e e 107
2.3.6 Thecontentnode uueenenenn.. 111
2.3.7 Thecontentnodetree 114
2.3.8 Toplevelnodes. 117
2.3.9 Nodevisibility 119
2.3.10 Objectrelations 0 i i i i e e 122
2.3.11 SeCtionS L. e e e e e e e e 124
2.3.12 URLStOTagE . .« v v v v v e i e e e et e e e e e e e e e e e e 126
2.3.13 Information collectiono L. 127

2.4 Configuration v v i i i e e e e e e e e e e e e e 128
2.4.1 Sitemanagement e ot e e e e e e e e e e e e e e e 130
2.4.2 Extension siteaccess SettiNg€sS « v v v v v v v v v e e e e 134
2.4.3 Accessmethods 135

2.5 Modulesand views e 137
2.6 URL translation e 141
2.7 Designs e e e e e e e e e e 145
2.7.1 Designcombinations o0 147

2.8 Accesscontrol e 149
2.9 Webshop 153
2.10 Workflows L 158
3 Templates 160
3.1 Template basics e e . 161
3.1.1 Nodetemplates. v v i i i i e e e e 164
3.1.2 Systemtemplates e e 166

3.2 The pagelayout e e e 168
3.2.1 Thepagehead e 172
3.2.2 \Variables in pagelayout 176

3.3 The template language, 184

Contents 4
3.3. 1 Comments it it e e e e e e e e e e e e 185
3.3.2 Variabletypes 186
3.3.3 Variableusage e 190
3.3.4 Array and objectinspection 194
3.3.5 Control StruCtures v v v v v v v e e e e e e e e 198
3.3.6 Functions and operators ottt e e e e e e e e 202

3.4 Basictemplatetasks L L 204
3.4.1 URLhandling. @ i ittt i e 207

3.5 Information eXtraction v v v v vt e e e e e e e e e e 210
3.5.1 Outputting node and objectdata 212

3.6 The template override system i i i 215
3.6.1 Template overrideexample 217

4 Features 220
4.1 Audit trailing e 221
4.2 Policy functions e e e 226
4.3 Multi-language o . e e e e e e e 229
4.3.1 Configuring yoursitelocale 233
4.3.2 Configuring the site languages 237
4.3.3 Managing the translation languages 242
4.3.4 Translatable class attributes 0., 244
4.3.5 Translatable countrynames, 249
4.3.6 Multilingual objects 251
4.3.7 Working with translations 254
4.3.8 The bit-field algorithm 259
4.3.9 Language based permissions 261

4.4 Multi-language support for URL aliases 263
4.4.1 Managing URLaliases 269
4.4.2 URLtransformationrules 274
4.4.3 Custom transformation commands 277

4.5 CIUStEriNg . . . v v o i e 279
4.5.1 ClusterFileHandlers 283
4.5.2 Cluster Configuration Settings 285
4.5.3 Setting it up for an eZDBFileHandler 292
4.5.4 Setting it up for an eZDFSFileHandler 297

Contents 5

4.6

4.7

4.8
4.9

4.10
4.11

4.12

4.5.5 Revertingaclustersetup, 302
4.5.6 Maintenancettt e e e e e e e e e 305

Packages e e e e 307
4.6.1 Package types. v i i i e e e e e e e 309
4.6.2 Creating new packages, 312
4.6.3 Exporting packagestofiles, 321
4.6.4 Importing packages tothesystem 323
4.6.5 Removing packages from repository 324
4.6.6 Installing packages 325
4.6.7 Uninstalling packages 330
4.6.8 packagexmlformat, 332
4.6.9 Custominstall scripts 335

Cronjobs e e e e e e 339
4.7.1 Thecronjobscripts i i e e e e 340
4.7.2 Configuring cronjobs 347
4.7.3 Runningcronjobs e e e 350

Advanced redirection afterlogin 353

VAT charging system ittt 358
4.9.1 Assigning VAT types to productso v ... 360
4.9.2 Three approaches to VAT charging 362
4.9.3 Productcategory i i i e e e e e e e 366
4.9.4 USEr COUNITY . & v v v v v v e 368
4.9.5 Displaying VATs on the actualsite. 371
4.9.6 Managing VAT typest o v i i e e e e e e e e 373
4.9.7 Managing product categories it e e e e 376
4.9.8 Managing VAT rules e 379
4.9.9 VAT SEttiNg€S . . v v v v v v e 381
4.9.10 Creatingnew VAT handlers 383

Improved shipping handling 385

LDAPlLoginHandler 389
4.11.1 LDAP Group Mapping Type 392
4.11.2 Rolesand Settings i e 395
4.11.3 Enhancements 396

MUulti-CUITENCY . . . v v vt o e e e e e e e e e e e e e e e e e e e 398

4.12.1 Custom prices and auto priCes oo v v v vt vt 399

Contents 6

4.12.2 Rounding auto prices v i it i i 402
4.12.3 CUITENCY TALES v v v v e v e e e e e e e e e e e e e e e e 404
4.12.4 Creatin@ @aNEW CUITENCY +» « v ¢ v v v v v v v e e e e e e e e e e e e e e 406
4.12.5 Editing @ CUITENCY . . .« « v v v v v i e e e e e e e e e e e 411
4.12.6 RemMOVINg @ CUITENCY .« . « « v v v v v e e e e e e e e e e e e e e e e e 415
4.12.7 Preferred currency o i it e e e e e 416
4.12.8 Multi-price productso e 418
4.12.9 ProductS OVEIVIEW v v v v v vttt e et e e e e e 422
4.12.10Exchange rates update handlers 423
4.12.11Upgrading your webshop oo 426

413 Viewcaching e e e e e 428
4.13.1 Configuring theviewcache 431
4.13.2 Clearing theviewcache 434
4.13.3 Smart view cachecleaning 437
4.13.4 Pre-generationofviewcache 443

4.14 Notifications e e 444
4.14.1 Using the admininterface 446
4.14.2 Using anactualsite 452
4.14.3 Adding a "Keep me updated” button 455
4.14.4 CustomizingtheE-mails 456
4.14.5 Granting access to notifications L. L. 457
4.14.6 Notification €vents v v v v v v v it 463
4.14.7 Notification handlers. 465
4.14.8 Frequently Asked Questions 468

4.15 Searchengine 470
4.16 WebDAV e e e e e e e 473
4.16.1 Settin@ it up v v v i i e e e e e e e e e e e e e e e e e 478

4.17 User defined Object States 481
4.18 Languageswitcher e 488
5 Reference 491
5.1 Databaseschema. 492
5.2 DatatyPes & v v v e 493
521 Authors e 495

5.2.2 Checkbox e e 497

Contents 7
523 Country e e e e e e e e e 499
524 Date e e e 501
525 Dateandtime 503
5.2.6 E-mail. e e 505
S5.2.7 Enum e e 506
5.2.8 File e e e e e 507
529 Float e e e e e e 510
5.2.10 Identifier 512
5211 Image e e e e e e e e e 514
5212 IniSetting v v v v it e e e e e e e e e e e e e e e e 518
5213 Integer v i i e e e e e e e e e e e e e 519
5.2.14 ISBN . . o e e e e e e e e 521
5215 ISBN (as 0of 4.5) o o ot 526
5.2.16 Keywords o o i i i e e e e e e e e e e e e e 531
5217 MatriX e e e e e e e e e e e e 533
5218 Media . . .o v v o e 535
5.2.19 Multi-optiont i e e e e e e e e 539
5.2.20 Multi-option2. L e e e e e e e 541
5.2.21 Multi-price e e e e e e e e e e 548
5.2.22 Objectrelation e 550
5.2.23 Objectrelations e 552
5224 Option e e e e e e e e e e e e e e 557
5.2.25 Package e e e e e e e 559
5.2.26 Price. oL e 560
5.2.27 ProduCt Cat€gOTY . . . « v v v v e e e e e e e e e e e e e e e e e 562
5.2.28 Range option o L i e e e e e e 563
5.2.29 Selection 565
5.2.30 Subtree subscription e 567
5.2.31 Textblock. e 568
5.232 Textline e 570
5233 TIMe . . L o o e e e e e e e 572
5234 URL o ot e e e e e e e e e e e e 573
5.2.35 USeracCount v v v v v v v vt v v it e e e e e e 575
5.2.36 XMLblock e e 577

5.3

Content classes v e e e e e e e e 594

Contents 8

5.4

5.5
5.6

531 Content e e e e e e e e e e 595
532 Media . . . oo e 611
5.3.3 Users oot e e e e 618

Modules e e e e e e 621
541 class. ... e 623
5.4.2 collaboration 642
54.3 CONENL o i i i e e e e e e e e e e e 655
S:44 EITOT . . v i v it s e e e e e e e 791
545 ezinfo e 792
546 form. e 797
5.4.7 infocollector 800
548 layout e 805
5.49 notification 810
5.4.10 package e e e e e e e e e 822
5411 PAf © ot 845
5.4.12 reference e 849
5413 role . ..o e 850
5414 1SS . . o o e e e e e e e e e 858
5415 search e 864
5.4.16 SECLION L L e e e e e e e e e 871
5417 SETUD . . . L e e e e e e e e e e 886
5418 shop o e e e e e 887
SA19 trigCer. . v v v v i i e e e e e e e e e e e e 930
5420 url . .. e 933
5421 USEr . . v v i i e e e e e e e 942
5.4.22 workflow e e e 967

VIEWS . o o o e e e 979

Objects i e e e e e e e e e 980
5.6.1 ezauthor 983
5.6.2 ezbasket e 984
5.6.3 ezbinaryfile e 987
5.6.4 ezcontentbrowsebookmark, 988
5.6.5 ezcontentbrowserecent 989
5.6.6 ezcontentclass 990

5.6.7 ezcontentclassattribute L Lo 994

Contents 9
5.6.8 ezcontentclassclassgroup e e 997
5.6.9 ezcontentclassgroup Lo e 998
5.6.10 ezcontentlanguage e e e e 999
5.6.11 ezcontentobject 1000
5.6.12 ezcontentobjectattribute L o 1009
5.6.13 ezcontentobjecttranslation 1013
5.6.14 ezcontentobjecttrashnode 1014
5.6.15 ezcontentobjecttreenode. e 1018
5.6.16 ezcontentobjectversiont 1023
5.6.17 ezcurrencydatao e e e e e e e e e 1027
5618 ezdate e e 1029
5.6.19 ezdatetime 1030
5.6.20 ezimagealiashandler 1031
5.6.21 ezimagelayer e e e e e e e e e 1036
5.6.22 ezimageobject e e e e 1037
5.6.23 ezinformationcollectiono L. 1038
5.6.24 ezinformationcollectionattribute L. 1040
5.6.25 ezkeyword e 1042
5.6.26 ezlocale e 1043
5.6.27 €ZmatriX i i e e e e e e e e e e e e 1047
5628 ezmedia. e e e e 1050
5.6.29 ezmultioption e e e e e e e e e e e e 1052
5.6.30 ezmultioption2 e e e 1054
5.6.31 ezmultiprice e 1059
5.6.32 €znodeasSignment ittt e e e e e e e e e e e e 1061
5.6.33 €ZOption oL e e e e e e 1063
5.6.34 ezorder e 1064
5.6.35 ezorderitem. e 1068
5.6.36 €Z0orderstatlis . . . v v v v v h e e e e e e e e e e e e e e e e 1069
5.6.37 ezpolicy e e e e e 1070
5.6.38 ezprice e e e e e e e e e 1071
5.6.39 ezproductcategory it i i e e e e e e e 1072
5.6.40 ezproductcollectionitem 1073
5.6.41 ezrangeoptiont i i i e e e e e e e e 1074
5.6.42 ezrole e 1076

Contents 10
5.6.43 €zZSection e e e e e e e 1077
5.6.44 ezsimplifiedxmlinput. 1078
5.6.45 ezsubtreenotificationrule 1079
5.6.46 eztime e e e e e e e 1080
5.6.47 ezurl e 1081
S5.6.48 @ZUSET L e e e e e e e e 1082
5.6.49 ezvatrule e 1084
5.6.50 €ZvattyPe . . . v v i i e 1086
5.6.51 ezxhtmlxmloutput 1087
5.6.52 ezxmlinputhandler Lo . 1088
5.6.53 ezxmloutputhandler, 1089
5.6.54 ezxmltexXt e 1090

5.7 Workflow events e 1091
5.7.1 APDPIOVE . . . o i i e e e e e e e e e e e e 1092
5.7.2 Multiplexer 1094
5.7.3 Payment gateway ittt e e e e e e e e e e e 1095
5.7.4 Simpleshipping e e 1097
5.7.5 Waituntildate e 1098

5.8 Template Operators i e e e e e e e e e e e e 1099
581 AIrays . . v v v i i e 1100
5.8.2 Data and information extraction 1123
5.8.3 Formatting and internationalization 1137
5.84 Images i e e e e 1151
5.8.5 Logicaloperations 1161
5.8.6 Mathematics e 1188
5.8.7 Miscellaneous 1215
588 Strings e e e e e e e e e 1248
589 URLS . . oottt et e e e e e e 1293
5.8.10 Variable and type handling 1301

5.9 Template functions e . 1330
5.9.1 Debugging e e e e 1331
5.9.2 Miscellaneous e 1337
5.9.3 Variables e 1350
5.9.4 Visualization 1363

5.10 Template control structureso e 1382

Contents 11

5.10.1 Conditional control 1383
5.10.2 LoOpING v i i e e e e e e e e e e e e e e e e e e 1389
5.10.3 Deprecated i e e e e e e e e e e 1395
5.11 Template override conditions e 1397
5.11.1 node/view/*.tpl 1399
5.11.2 content/search.tpl e 1400
5.11.3 content/edit.tpl e 1401
5.11.4 content/advancedsearch.tpl 1402
5.11.5 content/versions.tpl e 1403
5.11.6 content/browse.tpl. Lo o 1404
5.11.7 content/versionview.tpl 1405
5.11.8 node/view/pdfitpl L 1406
5.11.9 content/collectedinfo/*.tpl, 1407
5.11.10content/collectedinfomail/*.tpl 1408
5.11.11content/collectedinfo/*.tpl 1409
5.11.12class/edit.tpl e 1410
5.11.13class/groupedit.tpl e 1411
5.11.14class/view.tpl e e 1412
5.11.15workflow/edit.tpl e 1413
5.11.16workflow/groupedit.tpl 1414
5.11.17workflow/view.tpl 1415
5.11.18layout/set.tpl e e e e e e e e e e e e 1416
5.11.19pagelayout.tpl 1417
5.11.20content/datatype/edit/*.tpl oL L 1418
5.11.21content/datatype/view/*.tpl 1419
5.11.22content/view/*.tpl e e e e 1420
5.11.23content/tipafriend.tpl e 1421
5.11.24content/tipafriendmail.tpl, 1422
5.11.25content/history.tplo 1423
5.11.26content/queued.tpl e e 1424
5.12 Template fetch functions 1425
5.13 Template PDF functions 1426
5.13.1 anchor e 1428
5.13.2 create indeX o e e e e e e e e e e e e e e e e 1429

5.13.3 filled circle e e e e 1430

Contents 12
5.13.4 filledrectangle 1432
5.13.5 footer e e 1434
5.13.6 footerblock e e e 1436
5.13.7 frame header e 1437
5.13.8 frontpage i e e e e e e e e e e e e e 1439
5.13.9 header e 1440
5.13.10header block 1442
5.13.11image e e e e e e e e e e e e e 1443
5.13.12keyword e e e e e e e e e 1445
5.13.13line e e e e e e 1446
5.13.14Link e 1448
5.13.15new line e e e e e e e 1449
5.13.16new page i e e e e e e e e e e e e e e e e e 1450
5.13.17pagenumber e e e e e e e e e 1451
5.13.18setfont v vt e e e e e e e e e e e e e e e 1452
5.13.19setmargin e e e e e e e e e e e e e e e e 1454
5.13.20strike L e e e e e e e e 1455
5.13.21table. e 1456
SA3.22EEXE + v v e 1458
5.13.23teXt bOX e e e e e e e e e e 1460
5.13.24textframe e e e e e e e e e e e e e e e 1461
S.13.2510C . & v v o e e e e e e e e e e e e e e e e e e 1463
5.13.26ul e e e e e e e 1464

5.14 Configurationfiles e 1465
5141 auditini.o 1468
5.14.2 binaryfiledni 1473
5.14.3 browse.ni 1482
5.14.4 collaboration.ini 1639
5.145 collect.ini 1640
5.14.6 config.php 1663
5.14.7 content.ini Lo e e e 1671
5.14.8 contentstruCturemenu.ini+« v v v vttt e e e 1732
5.14.9 countryini e e e e e e e e e e 1738
5.14.10cronjob.ini 1744

S.14.11datatype.dni o oo e e e e e e e e e e e e e e e e e 1755

Contents 13
5.14.12datetime.ini. L. e e e e e e 1768
5.14.13dbschema.ini e 1769
5.14.14debug.ini e e e e 1773
5.14.15design.ini e e 1779
S.14.16errorini L oo 1788
5.14.17extendedattributefilterini, 1789
5.14.18ezxmlini e e e e e 1790
5.14.19fetchalias.ini 1800
5.14.20file.ini e e e e e e e e 1801
S5.14.21118N.N0 .« . . v v e e e e 1830
5.14.22icoN.Ni . . o oL u e e e e e e e e e e e 1833
5.14.23Iimage.dni o oL e e e e e e e e e e e e e e 1848
S5.14.24layout.dni Lo e 1970
5.14.25ldap.ini e e e e e e 1971
5.14.26logfile.ini 2007
S5.14.27menu.ini L. e 2012
5.14.28module.ini 2135
5.14.29notification.ini e e e e 2142
5.14.300verride.nio Lo 2161
5.14.31package.ini i it e e e e e e e e e 2162
5.14.32paymentgateways.ini oL oo 2180
5.14.33setup.ini e e e e e e e e e e e e e e 2184
5.14.34shopaccount.ini 2255
5. 1435800001 .« v v v v e e e e e e e e e e e e e e e e e 2260
5.14.36s0ap.ini e e e e e e e e e e e 2533
5.14.37staticcache.ini e e e e 2534
5.14.38template.ini. e e e e 2541
5.14.3%extfile.ini 2565
5.14.40texttoimage.qni oL e e e e e e e e 2578
5.1441toolbarini 2605
5.14.42transform.ini 2606
5.14.43Unitsini oL e e e e e e e e e e e e e e 2627
5.14.44upload.ini e e e e e e e e e e 2674
5.14.45viewcache.ni 2695

5.14.46webdavini e e e e e e e e e 2707

Contents 14

5.14.47wordtoimage.ini 2725
5.14.48workflow.ini L 2730
5.15 Libraries e 2740
5151 ezdb. e 2741
5.15.2 ezdbschema 2742
5.15.3 ezfile e e 2743
5154 ezil8n. . . . L. e e e e 2744
5.15.5 ezimage e e e e e e e e e e e e e e e e e 2745
5156 ezlocale 2746
5.15.7 ezpdf e 2747
5.15.8 €ZS0ap e e e e e e e e e e e e e e e e e e e 2748
5.15.9 eztemplate 2749
5.15.10ezutils e e 2750
5.15.11ezwebdav 2751
5.15.12ezxml e 2752
516 XML tagZs . v v v v v e 2753
5.17 SCripts . . o v o i e e e e e e e e e e e e e 2754
S5.17.1 GENETIC .« v v v v v v v et e e e e e e e e e e e e e e e e e e e 2755
5.17.2 Upgrade. i i e e e e e e 2817
5.17.3 Cronjobs e e e e e e e e e 2818

5.17.4 Miscellaneous v v v v v e e e e e e e e e e e e e e 2819

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Step 1: Welcome page v v v v i e e e e e e e e e e e 55
System finetuning L e e e e e e 55
Step 2: ISSUES . . v v v i e e e e e e e e e e e e e e e 56
Step3: Outgoing E-mail 57
Step 4: Database choice 58
Step 5: Database initialization 59
Step 6: Language SUPPOTt it e e e e e e e e e e e e e e 59
Step 7: Site selection e e e e e e 60
The list of imported packages 61
Package language options Lo 62
Step 8: Site access configuration, 64
Step9: Sitedetails L 65
Step 10: Site administratoro 0. 66
Step 11: Site registration o . it e e e 67
Step12: Finished 68
Screenshot of the extension configuration in the administration interface. . 82
The debug output appears at the bottom of thepage 85
Libraries, kernel and modules. 87
Content + Design = Webpage, 92
StOrage OveIvIeW i e e e e e e e e e e e e 93
Example of acontentclass., 97
The class editinterface. e 98
Datatypes, attributes, a content class and objects. 104
Content object structure (with versions and translations). 107
The list of existing languages for translation of content. 108
Object-noderelation 111

15

List of Figures 16

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2
4.3

Objects, nodes and the content node tree 114
Contentnode tree v v v v v it i e e e e e e e e e e 114
Objects, node and the content node tree - multiple locations 115
Content node tree with multiple locations 115
Toplevelnodes. e e 117
Hiding avisiblenode 120
Hiding an invisiblenode o oL 120
Unhiding a node with a visible ancestor 121
Unhiding a node with an invisible ancestor 121
Example of sections. L e 125
Example of a setup with two siteaccesses. 130
Siteaccess directory example. oL oo e 131
Configuration override example., 132
Objects, nodes and nice URLS.o vt v it i it v v v v .. 143
The design fallback mechanism. 147
Users, groups, policiesandroles. 149
The integrated e-commerce solution. 153
The workflow system. 158
Client-servercycle. 0 i i i e e e e 162
The module result as a part of the pagelayout. 162
Location of pagelayout and full view template in example design. 164
Pagelayout + node view full template. 164
The location of the pagelayout (main) template. 168
The structure of the "ezdate” object. 189
Typical components of a functioncall. 202
Typical components of a template operatorcall. 203
The override system. i i it e e e e 215
Template override example. L oo 216
Example contentnode tree. e e . 217
Pagelayout + override templates in example design. 218
Template override example. L 219
The language selection step in the setup wizard. 238
The "Create here” interface. 239

The list of translation languages. 242

List of Figures 17
4.4 Adding a new translation language., 243
4.5 Choose a language for a new contentclass. 245
4.6 The main window of the class view interface. 246
4.7 The language selection interface for class attribute names. 246
4.8 Enabling the translations window. 247
4.9 Translations window. 247
4.10 List of countries containing translated country names. 250
4.11 The "Create here” interface. 251
4.12 Thelistofclasses. e 252
4.13 Theclasseditinterface. 253
4.14 The language selection interface. 255
4.15 TheconteXt MeNU. v v v v v v v v e e e e e e e e e e e e e e e 255
4.16 Selecting the language forediting. 256
4.17 The "My drafts” interface. i e 257
4.18 The reduced language selection interface. 258
4.19 The policy edit interface. 261
4.20 The policy editinterface. 262
4.21 Therole editinterface. 262
4.22 e e e e e e 265
4.23 The interface for managing the URL aliases of a contentnode 269
4.24 The interface for global URL aliases managing 271
4.25 The interface for managing wildcard URL aliases 273
4.26 The "Local” system repositoryisempty.o v v v v v v .. 312
4.27 The package creation dialog. 313
4.28 The content class exportdialog. 313
4.29 The package creation wizard: package informationstep. 314
4.30 The package creation wizard: information about the package maintainer. 314
4.31 The package creation wizard: changelog. 315
4.32 The package creationdialog. 315
4.33 The content object export dialog (no objects selected). 315
4.34 Browse the content tree and select which nodes that will be exported. 316
4.35 Browse the content tree and select which subtrees that will be exported. . . 317
4.36 The content object export dialog (one node and one subtree selected). . . . 317
4.37 The content object package creation wizard: export properties for content

ObjectS. . . . e e e e e e e e 318

List of Figures 18

4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58
4.59

4.60
4.61
4.62
4.63
4.64
4.65
4.66
4.67
4.68
4.69
4.70
4.71

The extension package creation wizard. 318
The site style package creation wizard: choose thumbnail. 319
The site style package creation wizard: select CSS files. 319
The site style package creation wizard: add images. 320
The list of packages. e 321
The package summary view interface. 322
The list of packages. 323
The import package interface. 323
Removing a package. e 324
The content class package summary. 325
The content class package installation wizard, step 1. 326
The content class package installation wizard, step2. 326
The content object package installation wizard, step 1. 327
The content object package installation wizard, step 2. 327
The content object package installation wizard, step 3. 328
The content object package installation wizard, step4. 328
The extension package installation wizard, step 1. 328
The extension package installation wizard, step2. 329
The package uninstallation wizard, step 1. 330
The package uninstallation wizard, step2. 331
The package uninstallation wizard, step3. 331
Displaying a custom install script in the list of items during the package
installation process 336
Displaying a custom wizard step during the package installation process . . 337
Class attribute edit interface for the "Date and time” datatype. 342
A fragment of the class edit interface. 354
Setting the redirection URI for theuserJohn 355
A fragment of the class edit interface. 355
Setting the redirection URI for the "Guest accounts” user group 356
A fragment of the object view interface for the user with two locations.. . . 356
Setting the VAT type on the objectlevel. 360
Setting the default VAT type on the classlevel. 361
Class attribute edit interface for the "Product category” datatype. 366
A fragment of the product edit interface.. 367
Class attribute edit interface for the ”"Country” datatype. 368

List of Figures 19

4.72
4.73
4.74
4.75
4.76
4.77
4.78
4.79
4.80
4.81
4.82
4.83
4.84
4.85
4.86
4.87
4.88
4.89
4.90
4.91
4.92
4.93
4.94
4.95
4.96
4.97
4.98
4.99
4.100
4.101
4.102
4.103
4.104
4.105
4.106

The list of VAT types. v o v v i i i e e e e e e e e e e e 373
The newly added VAT type in the list of VAT types. 373
The confirmation dialog., 375
The list of product categories. v . v v i i i e 376
The newly added category in the list of product categories. 376
The confirmation dialog., 378
The list of VAT chargingrules. 379
The VAT charging rule edit interface. 379
The newly created VAT rule in the list of VAT charging rules. 380
The base price in USD and two auto prices. 400
The base price in USD, non-base custom price in NOK and auto price in EUR. 400
The results of removing the base custom price. 400
The list of available currencies., 406
The currency editinterface. 406
The list of available currencies. 407
The currency edit interface. 408
Unknown currency name in the list of currencies. 408
Displaying inactive currency in the list of currencies. 410
The list of currencies with disabled possibility to update auto rates. 412
The list of currencies with updated autorates. 412
The list of currencies with removed customrates. 413
The list of currencies with one customrate. 413
The class edit interface for a productclass. 418
Class attribute edit interface for the "Multi-price” datatype. 419
The products overview interface. 422
The resulting prices after product upgrading. 426
Clearing the view cache using popupmenu. 435
A part of the site content structure. 440
The notification filter interface. 445
Browsing the contenttree. 447
Subscribing to subtree notifications using the context menu. 447
The "notification added” confirmation for administrators. 448
Notification settings for administrators. 448
Browsing the content tree. ittt 449
The”Up”button e 449

List of Figures 20

4.107
4.108
4.109
4.110
4.111
4.112
4.113
4.114
4.115
4.116
4.117
4.118
4.119
4.120
4.121
4.122
4.123
4.124
4.125
4.126
4.127
4.128
4.129
4.130
4.131
4.132
4.133
4.134
4.135
4.136
4.137

5.1
5.2
5.3

Digest Settingso e e e e e e e e e e e 449
The list of items for subtree notifications. 450
Settings for collaboration notifications. 451
The "keep me updated” button., 452
The "notification added” confirmation for users. 452
Notification settings for users. 453
The usergroup view interface., 457
Thelistofroles. 458
Addinganewrole.. e e e 458
The new policy wizard, step 1. 459
The new policy wizard, step 2. e 459
The role edit interface. 460
The role view interface. 460
Assigning aroleto @ USer Eroup. v v v v v v vt e e e e e 461
The role view interface. 462
Standard search interfaceo L. 470
Advanced searchinterface. o o oo oo 471
Search statistics L e 472
WebDAV - Virtual topfolder, 473
WebDAV - Login e e e e e e e e e 474
WebDAV - Top levelnodes 474
WebDAV - Contentnode tree 475
WebDAV - IEopendialog 479
WebDAV - Content node tree v v v ittt i 480

.. 483

.. 484

.. 485

.. 486

.. 486

.. 486

.. 487
Class attribute edit interface for the Authors” datatype. 495
Object attribute edit interface for the "Authors” datatype. 495

Class attribute edit interface for the "Checkbox” datatype. 497

List of Figures 21

5.4

5.5

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29

5.30
5.31
5.32
5.33

5.34
5.35
5.36

Object attribute edit interface for the "Checkbox” datatype. 497
Class attribute edit interface for the "Country” datatype. 499
Obiject attribute edit interface for the "Country” datatype. 499
Class attribute edit interface for the "Date” datatype. 501
Object attribute edit interface for the "Date” datatype. 502
Class attribute edit interface for the "Datetime” datatype. 503
Object attribute edit interface for the "Date and time” datatype. 504
Class attribute edit interface for the "Email” datatype. 505
Object attribute edit interface for the ”E-mail” datatype. 505
Class attribute edit interface for the "File” datatype. 507
Object attribute edit interface for the ”File” datatype. 508
Object attribute edit interface for the "File” datatype.. 508
Complete directory structure with uploaded files. 509
Class edit interface for the "Float” datatype. 510
Object attribute edit interface for the "Float” datatype. 511
Class attribute edit interface for the ”Identifier” datatype. 512
Class attribute edit interface for the "Image” datatype. 514
Object attribute edit interface for the "Image” datatype. 515
Object attribute edit interface for the "Image” datatype. 515
Example of image path on the filesystem. 516
Example of an image subdirectory. 516

Complete directory structure with uploaded image and generated variations. 516

Class edit interface for the "Integer” datatype. 519
Object attribute edit interface for the "Integer” datatype. 520
Class attribute edit interface for the "ISBN” datatype.. 523
Class attribute edit interface for the "ISBN” datatype if the range data for
ISBN-13 was not imported. o v v i ittt e 523
Object attribute edit interface for the "ISBN” datatype. 523
Object attribute edit interface for the ZISBN” datatype when in ISBN-10 mode.524
Class attribute edit interface for the "ISBN” datatype.. 528
Class attribute edit interface for the "ISBN” datatype if the range data for
ISBN-13 was not imported. v v v i it e e 528
Object attribute edit interface for the ZISBN” datatype. 528

Object attribute edit interface for the "ISBN” datatype when in ISBN-10 mode.529

Class attribute edit interface for the "Keywords” datatype. 531

List of Figures 22

5.37 Object attribute edit interface for the "Keywords” datatype. 531
5.38 Class attribute edit interface for the "Matrix” datatype. 533
5.39 Object attribute edit interface for the "Matrix” datatype. 534
5.40 Class attribute edit interface for the "Media” datatype. 535
5.41 Object attribute edit interface for the "Media” datatype (Flash). 537
5.42 Object attribute edit interface for the "Media” datatype (QuickTime).. . . . 537
5.43 Object attribute edit interface for the "Media” datatype (Real Media). ... 537
5.44 Object attribute edit interface for the "Media” datatype (Windows media). . 538
5.45 Class attribute edit interface for the "Multi-option” datatype. 539
5.46 Object attribute edit interface for the "Multi-option” datatype. 540
5.47 Class attribute edit interface for the "Multi-option2” datatype. 544
5.48 Object attribute edit interface for the "Multi-option2” datatype. 545

5.49 A part of the object attribute edit interface for the "Multi-option2” datatype. 546

5.50 Dependency rules in the object attribute edit interface for the “Multi-

Option2” datatyPe. . . v v v v i i e e e e e e e e e e e e e e e e e e e 547
5.51 Class attribute edit interface for the "Multi-price” datatype. 548
5.52 Object attribute edit interface for the "Multi-price” datatype. 549
5.53 Class attribute edit interface for the "Object relation” datatype. 550
5.54 Obiject attribute edit interface for the ”Object relation” datatype. 551
5.55 Class attribute edit interface for the "Object relations” datatype.. 552
5.56 Object attribute edit interface for the "Object relations” datatype (default

selection method). 554
5.57 Object attribute edit interface for the "Object relations” datatype (list with

checkboXes). . . . o v e e e e e e e e e e e 554
5.58 Object attribute edit interface for the "Object relations” datatype (multiple

selection list). e e e e e e e e 555
5.59 Object attribute edit interface for the "Object relations” datatype (dropdown

list). .« o o 555
5.60 Obiject attribute edit interface for the "Object relations” datatype (list with

radio buttons). e e e e e e e e e e e e e e e 555
5.61 Class attribute edit interface for the "Option” datatype. 557
5.62 Object attribute edit interface for the "Option” datatype. 558
5.63 Class attribute edit interface for the "Price” datatype. 560
5.64 Object attribute edit interface for the "Price” datatype. 561
5.65 Class attribute edit interface for the "Product category” datatype. 562
5.66 Object attribute edit interface for the "Product category” datatype. 562

5.67 Class attribute edit interface for the "Range option” datatype. 563

List of Figures 23

5.68
5.69
5.70
5.71
5.72
5.73
5.74
5.75
5.76
5.77
5.78
5.79
5.80
5.81
5.82
5.83
5.84
5.85
5.86
5.87
5.88
5.89
5.90
5.91
5.92
5.93
5.94
5.95
5.96
5.97
5.98
5.99

Object attribute edit interface for the "Range option” datatype. 563
Class attribute edit interface for the ”"Selection” datatype. 565
Obiject attribute interface for the ”Selection” datatype. 566
Class edit interface for the "Text block” datatype. 568
Object attribute edit interface for the "Text block” datatype. 569
Class edit interface for the "Text line” datatype. 570
Object attribute interface for the "Text line” datatype. 571
Class attribute edit interface for the "Time” datatype.. 572
Object attribute edit interface for the "Time” datatype. 572
Class attribute edit interface for the "URL” datatype. 573
Obiject attribute edit interface for the "URL” datatype. 573
Class attribute edit interface for the "User account” datatype. 575
Object attribute edit interface for the "User account” datatype. 576
Settings interface for the "User account” datatype. 576
Class attribute edit interface for the ”XML block” datatype. 578
Object attribute edit interface for the XML block” datatype. 578
Edit interface for the "Approve” event. 1092
Edit interface for the "Multiplexer” event. 1094
Edit interface for the "Payment gateway” event. 1095
Edit interface for the ”Simple shipping” event. 1097
Edit interface for the "Wait until date” event. 1098
Text rendered as image using the 1942 font. 1158
Text rendered as image using the ad monofont. 1158
Text rendered as image using the archturafont. 1158
Text rendered as image using the arial font. 1158
Text rendered as image using the gallery font. 1159
Text rendered as image using the object text font. 1159
Text rendered as image using the sketchy font. 1159
Text rendered as image using the smartie font. 1160
Text rendered as image using thead monofont. 1160
The contenttree o i i i i it e 1244
.. 2479

”4.x” is mostly documentation specifically for eZ Publish 4.0, only reference section (page 491)
is common for all eZ Publish 4.x versions as well as eZ Publish 5.x "LegacyStack”, please select
the version you are using for the most up to date documentation!

24

http://doc.ez.no/eZ-Publish/Technical-manual

Chapter 1

Installation

This part of the 4.x documentation is for eZ Publish 4.0, only reference section (page 491) is
common for all eZ Publish 4.x versions as well as eZ Publish 5.x "LegacyStack”, please select
the version you are using for the most up to date documentation!

This chapter explains how to obtain and install eZ Publish using the different installation
methods. In addition, it also describes how to upgrade or remove an existing eZ Publish
installation. If you don’t want to install eZ Publish yourself, you can always hire eZ Systems
to install and setup the software for you. It is also possible to purchase a hosted eZ Publish
solution from various providers and partners.

There are three ways of installing eZ Publish:

1. Normal installation
2. Manual installation

3. Automated installation

Normal installation

This option is the most common and recommended way of installing eZ Publish. It requires
a system which already has the proper environment installed, most notably a web server and
a database. eZ Publish needs to be downloaded and unpacked. A web-based setup wizard
is initiated using a browser. The setup wizard asks a couple of questions and automatically
configures eZ Publish. The method is explained under the "Normal installation” (page 27)
section.

Manual installation

This option is for experienced users. No wizards or fancy dialogs, no bundled software, no
installers, no nothing. This method requires a system which already has a web-server and
a database set up and ready to go; eZ Publish needs to be downloaded and unpacked. The
system is then configured by manually altering various configuration files and making manual
changes to the database. This method is explained under the "Manual installation” (page 39)
section.

25

http://doc.ez.no/eZ-Publish/Technical-manual

26

Automated installation

This installation method (also named kickstart) is for experienced users. It is designed for
system administrators who wish to do pre-configured installations of eZ Publish that require
a minimum of interaction with the web based setup wizard. It requires a system which
already has the proper environment installed, most notably a web server and a database. eZ
Publish needs to be downloaded and unpacked. Instead of clicking through the setup wizard
and manually providing configuration parameters, the system is installed based on a group
of settings defined in a configuration file. This method is explained under the "Automated
installation” (page 49) section.

1.1 Normal installation 27

1.1 Normal installation

The normal installation method is the most common and recommended way of deploying eZ
Publish. It requires a system which already has the proper environment installed, most no-
tably a web server and a database. The necessary requirements are explained in detail within
the next section (page 28). A typical normal installation process consists of the following
steps:

* Setting up / creating a database
* Downloading a packaged eZ Publish distribution

* Unpacking the eZ Publish distribution

* Initiating and going through the web based setup wizard

Once the web based setup wizard has completed, eZ Publish will be ready for use.

The "Installing eZ Publish on a Linux/UNIX based system (page 32)” and ”Installing eZ Pub-
lish on Windows (page 36)” sections (depending on the target OS) will take you through the
necessary steps.

1.1.1 Normal installation / Requirements for doing a normal installation 28

1.1.1 Requirements for doing a normal installation

eZ Publish makes use of and depends on four important things:

1. A web server

2. A server-side PHP scripting engine
3. The eZ Components library

4. A database server
5

. An image conversion system (optional)

The first three things should be in place before an eZ Publish installation is deployed. The
image conversion system is optional and is only needed if you’re planning to use eZ Publish
with images. The web server and the server-side PHP scripting engine has to run on the same
machine. The database server may run on a different computer.

For the moment, the following software solutions can be used:

Web server

Currently, only the Apache web server is supported. On Linux/UNIX based systems, it is
recommended to use the latest version of the 2.x branch. Note that it must run in "prefork”
mode instead of “threaded” mode - the reason for this is because some of the libraries that
PHP extensions use might not be thread-safe.

On Windows, it is recommended to use the latest version of the 1.3 branch. (Apache 2.x for
Windows is not supported since it only exists in "threaded” mode.)

The Apache web server is the most popular web server on the planet. It is free, open source
and can be downloaded from http://www.apache.org.

Server-side PHP scripting engine

Since most of the eZ Publish system is written using the PHP scripting language, a PHP
(hypertext preprocessor) server-side engine is needed. Make sure you have PHP 5.1.6 or
later.

Note that it is strongly recommended to use the latest version of the 5.x branch, which is PHP
5.2.5 at the time of writing. The reason for this is that eZ Publish runs faster on PHP 5.2 than
on PHP 5.1. In addition, some extensions may require PHP 5.2 (for example, the eZ Flow
extension that comes together with eZ Publish). Make sure you use the PHP version that is
required for your specific eZ Components version.

PHP is free software and can be downloaded from http://www.php.net. The following table
reveals which functionality PHP needs to have compiled-in support for.

Name Description

MySQLi extension (recommended) Required if a MySQL database will be used.
or MySQL functions
PostgreSQL functions Required if a PostgreSQL database will be

http://www.apache.org
http://www.php.net
http://www.php.net/mysqli
http://www.php.net/mysql
http://www.php.net/pgsql

1.1.1 Normal installation / Requirements for doing a normal installation 29

used.
Zlib compression functions Required (see below).
DOM functions Required (see below).
Session support Required (enabled in PHP by default).
PCRE functions Required (enabled in PHP by default).
GD2 support Required if ImageMagick is not installed.
CLI support Recommended (see below).
Client URL library functions Recommended (see below).
Multibyte string functions Required.
Exif functions Recommended.

Zlib extension

Make sure that zlib support in PHP is enabled, otherwise the setup wizard (page 54) will not
be able to unpack downloaded packages during the installation process.

DOM extension

In most cases, DOM functions are enabled by default as they are included in the PHP core.
However, some Linux distributions have PHP without compiled-in support for DOM. Instead,
they provide DOM as a shared module in a separate RPM package called ”php-xml”.

PHP CLI

It is strongly recommended to have PHP CLI installed, otherwise some features like notifica-
tions (page 444), delayed search indexing, upgrade scripts, the collaboration system (content
approval), clearing caches from within the command line, etc. will not work.

CURL

It is recommended to enable CURL support, otherwise some features like outbound connec-
tions via proxy (page 2355) and SSL support for eZSoap will not work.

PHP memory limit issue

eZ Publish needs at least 64 MB in order to complete the setup wizard. If you are using
PHP 5.2.0 or earlier version, you'll have to increase the default “memory limit” setting which
is located in the ”php.ini” configuration file. (Don’t forget to restart Apache after editing
”php.ini”.) Normal operation requires about 16 MB. However, it is highly recommended that
you keep the 64 MB setting since eZ Publish consumes a lot more memory as soon as you
reindex the search, execute upgrade scripts, etc. Multilingual sites will also require at least
64 MB.

If you are using PHP 5.2.1 or later, there is no need to change the default "memory limit”
setting (it is set to 128 MB by default).

http://www.php.net/zlib
http://www.php.net/dom
http://www.php.net/manual/en/ref.session.php
http://www.php.net/manual/en/ref.pcre.php
http://www.php.net/manual/en/ref.image.php
http://www.php.net/manual/en/features.commandline.php
http://www.php.net/curl
http://www.php.net/manual/en/ref.mbstring.php
http://www.php.net/exif
http://www.php.net/dom
http://www.php.net/manual/en/features.commandline.php
http://www.php.net/curl
http://pubsvn.ez.no/nextgen/trunk/doc/features/3.8/ssl_enhancement_with_ezsoapclient.txt

1.1.1 Normal installation / Requirements for doing a normal installation 30

PHP timezone

You need to set the "date.timezone” value in the "php.ini” configuration file. If this setting
is not specified, you will most likely receive error messages like "It is not safe to rely on the
system’s timezone settings” when running eZ Publish on PHP 5. The following example shows
how the corresponding line in ”php.ini” looks like:

date.timezone = <timezone>

Refer to the PHP documentation for the list of supported timezones. Don’t forget to restart
Apache after editing “php.ini”.

eZ Components library

eZ Publish is an object-oriented application where each class definition is stored in a separate
PHP source file. Instead of having a list of needed includes at the beginning of each source
file, eZ Publish 4 makes use of the autoload() function. When eZ Publish is installed, all
class definitions of the eZ Publish kernel will have their paths listed in the ”autoload/ezp_
kernel.php” file. In addition, the ”"autoload/ezp _extension.php” file will contain an array of
paths for class definitions that are a part of the extensions that come with eZ Publish. These
arrays will most likely need to be updated in the future (for example, when you install new
extensions or configure existing ones using the ”Setup - Extensions” part of the administration
interface). This requires eZ Components version 2007.1.1 or higher to be installed. In partic-
ular, you need to install the File and Base components ("ezcBase” and ”ezcFile”), otherwise
eZ Publish will not be able to update autoload arrays.

eZ Components is an enterprise ready general purpose PHP components library used inde-
pendently or together for PHP application development. eZ Components can be downloaded
from http://ezcomponents.org/download. In the future, eZ Components will be bundled
with eZ Publish. Refer to http://ezcomponents.org/docs/install for information about how
to install eZ Components.

Important note

Starting from version 2008.1, the eZ Components library requires PHP version 5.2.1 or higher.

Database server

eZ Publish stores miscellaneous data structures and actual content using a database. This
means that a database server has to be available for eZ Publish at all times. Follow this link to
the eZ Publish requirements page to find which database solutions eZ Publish is compatible
with.

The setup wizard will automatically detect the database server as long as it is running on the
same computer that functions as the web server. eZ Publish 4 requires a UTF-8 database.

Note that eZ Publish 4 does not support clustering (page 279) for PostgreSQL databases. The
clustering code is optimized for best performance and focused on MySQL databases using the
InnoDB storage engine.

http://www.php.net/manual/en/ref.datetime.php#ini.date.timezone
http://www.php.net/timezones
http://www.php.net/autoload
http://ezcomponents.org/download
http://ezcomponents.org/docs/install
http://ez.no/ezpublish/requirements
http://dev.mysql.com/doc/refman/5.1/en/storage-engine-overview.html

1.1.1 Normal installation / Requirements for doing a normal installation 31

Even if you are not going to run eZ Publish in a clustered environment, the use of InnoDB
is required. This storage engine makes it possible to use transaction-safe tables in a MySQL
database. (Database transaction support is enabled by default in eZ Publish. This feature
makes the system less vulnerable to database errors and inconsistencies due to aborted re-
quests.) Contact your database administrator if you are unsure about whether InnoDB is
available on your server.

If you want to use PostgreSQL, make sure the "pgcrypto” module is installed. On Linux/
UNIX, you may need to install a separate package called "postgresql-contrib” (refer to the
PostgreSQL documentation for more information), which contains the ”pgcrypto” module.
The "pgcrypto” module provides cryptographic functions for PostgreSQL, including the "di-
gest” function, which is needed for eZ Publish. When setting up a PostgreSQL database for
eZ Publish, you will have to register these functions in the database. Refer to the ”Setting up
a database” part of the "Installing eZ Publish on a Linux/UNIX based system” and ”Installing
eZ Publish on Windows” documentation pages (depending on the target OS) for more infor-
mation.

Session parameters

In order to support ezpSessionHandlerDB, session.hash_function and session.hash bits_per
character in php.ini should be combined with the goal of never generating keys longer then
32 bytes.

Recommended settings:

session.hash_function = 1
session.hash_bits_per_character = 4

Oracle compatibility

The version 1.8 of the eZ Publish Extension for Oracle Database makes it possible to use Ora-
cle as a database for eZ Publish 4.0.1 and higher. Note that earlier versions of the extension
are not compatible with eZ Publish 4.

Image conversion system (optional)

In order to scale, convert or modify images, eZ Publish needs to make use of an image con-
version system. One of the following software packages (both are free) can be used:

e GD2 (comes with PHP)

* ImageMagick (http://www.imagemagick.org)

ImageMagick supports more formats than GD and usually produces better results (better
scaling, etc.). The setup wizard will automatically detect the pre-installed image conversion
system(s).

The installation and setup of required software solutions (outlined above) is far beyond the
scope of this document. Please refer to the homepage and documentation of the different
software solutions.

http://www.postgresql.org/docs/8.3/static/pgcrypto.html
http://www.postgresql.org/docs/8.3/static/contrib.html
http://www.imagemagick.org

1.1.2 Normal installation / Installing eZ Publish on a Linux/UNIX based system 32

1.1.2 Installing eZ Publish on a Linux/UNIX based system

The requirements for doing a normal installation must be met! Read the "Requirements for
doing a normal installation (page 28)” section first. Proceed only if you have access to a
Linux/UNIX based system with Apache, PHP, MySQL or PostgreSQL already installed and
running. As mentioned earlier, the database server may run on a different computer than the
web server. This section will guide you through the following steps:

* Setting up a database (MySQL or PostgreSQL)

* Downloading eZ Publish

* Unpacking eZ Publish

* Initiating the setup wizard

Setting up a database

A database must be created before running the setup wizard. The following text explains how
to set up a database using either MySQL or PostgreSQL.
MySQL

1. Log in as the root user (or any other MySQL user that has the CREATE, CREATE USER
and GRANT OPTION privileges):

$ mysql --host=<mysql_host> --port=<port> -u <mysql_user> -p<mysql_password>

Note that if MySQL is installed on the same server, the ”--host” parameter can be omit-
ted. If the ”--port” parameter is omitted, the default port for MySQL traffic will be used
(port 3306).

The MySQL client should display a "mysql>" prompt.

2. Create a new database:

mysql> CREATE DATABASE <database> CHARACTER SET utf8;

3. Grant access permissions:

mysql> GRANT ALL ON <database>.* TO <user>@<ezp_host> IDENTIFIED BY
’<password>’;

Note that if the specified user account does not exist, it will be created.

<mysql host> The hostname of the MySQL database
server.
| <port> | The port number that will be used to connect |

http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html

1.1.2 Normal installation / Installing eZ Publish on a Linux/UNIX based system 33

to the MySQL database server.

<mysql_user> The MySQL user (if no user is set up, use
”root”).

<mysql_password> The password that belongs to the <mysql
user>.

<database> The name of the database, for example "my_
new database”.

<user> The username that will be used to access the
database.

<ezp_host> The hostname of the server on which eZ
Publish will be running. (may be ’localhost’
if MySQL is installed on the same server).

<password > The password you wish to set in order to
limit access to the database.

PostgreSQL

1. Log in as the postgres user (or any other PostgreSQL user that has sufficient privileges
to create roles and databases):

$ psql -h <psql_host> -p <port> -U <psql_user> -W

Note that if PostgreSQL is installed on the same server, the ”-h” parameter can be omit-
ted. If the ”-p” parameter is omitted, the default port for PostgreSQL traffic will be used
(in most cases, port 5432).

The PostgreSQL client will ask you to specify the password that belongs to the <psql_
user>. If the password is correct, the client should display a ”<psql_user>=#" prompt.

2. Create a new database:

postgres=# CREATE DATABASE <database> ENCODING=’utf8’;

3. Create a new user:

postgres=# CREATE USER <user> PASSWORD ’<password>’;

4. Grant access permissions:

postgres=# GRANT ALL PRIVILEGES ON DATABASE <database> TO <user>;

5. Import the "pgcrypto” module into the new database:

postgres=# \c <database>
<database>=# \i ’<path_to_pgcrypto>’

<psql_host> The hostname of the PostgreSQL database
server.
<port> The port number that will be used to connect

http://www.postgresql.org/docs/current/interactive/sql-grant.html
http://www.postgresql.org/docs/8.3/static/pgcrypto.html

1.1.2 Normal installation / Installing eZ Publish on a Linux/UNIX based system 34

to the PostgreSQL database server.
<psql_user> The PostgreSQL user (if no user is set up, use
”postgresql”).

<database> The name of the database, for example "my_
new database”.

<user> The username that will be used to access the
database.

<password > The password you wish to set in order to
limit access to the database.
<path_to_pgcrypto> The

path to the "pgcrypto.sql” file, for example
”/usr/share/pgsql/contrib/pgcrypto.sql”.

Downloading eZ Publish

The latest stable version of eZ Publish can be downloaded from http://ez.no/download/ez
publish.

Unpacking eZ Publish

Use your favorite tool to unpack the downloaded eZ Publish distribution to a web-served
directory (a directory that is reachable using a web browser). The following example shows
how to do this using the tar utility (to unpack a tar.gz file, assuming that the ”"tar” and the
”gzip” utilities are installed on the system):

$ tar zxvf ezpublish-<version_number>-gpl.tar.gz -C <web_served_directory>

<version number> The version number of eZ Publish that was
downloaded.
<web_served _directory> Full path to a directory that is served by the

web server. This can be the path to the doc-
ument root of the web server, or a personal
web-directory (usually called ”public_html”
or "www”, and located inside a user’s home
directory).

The extraction utility will unpack eZ Publish into a sub-directory called “ezpublish-<version_
number>". Feel free to rename this directory to something more meaningful, for example
“my site”.

Initiating the setup wizard

The setup wizard can be started using a web browser immediately after the previous steps
(described in this section) are completed. It will be automatically run the first time someone
tries to access/browse the index.php file located in the eZ Publish directory. Let’s assume that
we are using a server with the hostname "www.example.com” and that after unpacking, the
eZ Publish directory was renamed to "my site”.

http://share.ez.no/download-develop/downloads
http://share.ez.no/download-develop/downloads

1.1.2 Normal installation / Installing eZ Publish on a Linux/UNIX based system 35

Document root example

If eZ Publish was unpacked into a directory called "my site” under the document root, the
setup wizard can be initiated by browsing the following URL: http://www.example.com/my_
site/index.php.

Home directory example

If eZ Publish was unpacked to a web-served directory located inside the home direc-
tory of a user with the username ”peter”, (usually called ”public html”, "www”, "http”,
“html” or "web”), the setup wizard can be initiated by browsing the following URL: http:/
/www.example.com/ " peter/my site/index.php.

Refer to "The setup wizard (page 54)” section for a detailed description of the web based
setup wizard.

1.1.3 Normal installation / Installing eZ Publish on Windows 36

1.1.3 Installing eZ Publish on Windows

The requirements for doing a normal installation must be met! Read the "Requirements
for doing a normal installation (page 28)” section first. Proceed only if you have access
to a Windows based system with Apache, PHP, MySQL or PostgreSQL already installed and
running. (Do not use Apache 2.x for Windows.) As mentioned earlier, the database server
may run on a different computer than the web server. This section will guide you through the
following steps:

* Setting up a database (MySQL or PostgreSQL)

* Downloading eZ Publish

* Unpacking eZ Publish

* Initiating the setup wizard

Setting up a database

A database must be created before running the setup wizard. The following text explains how
to set up a database using either MySQL or PostgreSQL.

MySQL

1. Log in as the root user (or any other MySQL user that has the CREATE, CREATE USER
and GRANT OPTION privileges):

mysql --host=<mysql_host> --port=<port> -u <mysql_user> -p<mysql_password>

Note that if MySQL is installed on the same server, the ”--host” parameter can be omit-
ted. If the ”--port” parameter is omitted, the default port for MySQL traffic will be used
(port 3306).

The MySQL client should display a "mysql>" prompt.

2. Create a new database:

mysql> CREATE DATABASE <database> CHARACTER SET utfS§;

3. Grant access permissions:

mysql> GRANT ALL ON <database>.* TO <user>@<ezp_host> IDENTIFIED BY
’<password>’;

Note that if the specified user account does not exist, it will be created.

<mysql host> The hostname of the MySQL database
server.
<port> The port number that will be used to connect

http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html

1.1.3 Normal installation / Installing eZ Publish on Windows 37

to the MySQL database server.

<mysql_user>

The MySQL user (if no user is set up, use
”root”).

<mysql_password>

The password that belongs to the <mysql
user>.

<database> The name of the database, for example "my_
new database”.

<user> The username that will be used to access the
database.

<ezp_host> The hostname of the server on which eZ
Publish will be running. (may be ’localhost’
if MySQL is installed on the same server).

<password > The password you wish to set in order to
limit access to the database.

PostgreSQL

1. Log in as the postgres user (or any other PostgreSQL user that has sufficient privileges

to create roles and databases):

psql -h <psql_host> -p <port> -U <psql_user> -W

Note that if PostgreSQL is installed on the same server, the ”-h” parameter can be omit-
ted. If the ”-p” parameter is omitted, the default port for PostgreSQL traffic will be used

(in most cases, port 5432).

The PostgreSQL client will ask you to specify the password that belongs to the <psql_
user>. If the password is correct, the client should display a ”<psql_user>=#” prompt.

2. Create a new database:

postgres=# CREATE DATABASE <database> ENCODING=’utf8’;

3. Create a new user:

postgres=# CREATE USER <user> PASSWORD ’<password>’;

4. Grant access permissions:

postgres=# GRANT ALL PRIVILEGES ON DATABASE <database> TO <user>;

5. Import the "pgcrypto” module into the new database:

postgres=# \c <database>
<database>=# \i ’<path_to_pgcrypto>’

<psql_host>

The hostname of the PostgreSQL database
server.

<port>

The port number that will be used to connect

http://www.postgresql.org/docs/current/interactive/sql-grant.html
http://www.postgresql.org/docs/8.3/static/pgcrypto.html

1.1.3 Normal installation / Installing eZ Publish on Windows 38

to the PostgreSQL database server.

<psql_user> The PostgreSQL user (if no user is set up, use 1
”postgresql”).

<database> The name of the database, for example "my_

new database”.

<user> The username that will be used to access the

database.

<password > The password you wish to set in order to

limit access to the database.

<path_to_pgcrypto> The path to the ”pgcrypto.sql”

file, for example ”C:\\Program

Files\ \PostgreSQL\\8.2\ \share\ \contrib\ \ pgcrypto.sql”

Downloading eZ Publish

The latest stable version of eZ Publish can be downloaded from http://ez.no/download/ez
publish. Windows users should download the ”.zip” archive.

Unpacking eZ Publish

Use your favorite utility to unpack the downloaded eZ Publish archive to a web-served direc-
tory (a directory that is reachable using a web browser). The extraction utility will unpack
eZ Publish into a subdirectory called “ezpublish-4.x.y”. Feel free to rename this directory to
something more meaningful, for example “my site”.

Initiating the setup wizard

The setup wizard can be started using a web browser immediately after the previous steps
(described in this section) are completed. It will be automatically run the first time someone
tries to access/browse the index.php file located in the eZ Publish directory. Let’s assume that
we are using a server with the hostname "www.example.com” and that after unpacking, the
eZ Publish directory was renamed to "my site”.

Document root example

If eZ Publish was unpacked into a directory called "my site” under the document root, the
setup wizard can be initiated by browsing the following URL: http://www.example.com/my_
site/index.php.

Refer to "The setup wizard (page 54)” section for a detailed description of the web based
setup wizard.

http://share.ez.no/download-develop/downloads
http://share.ez.no/download-develop/downloads

1.2 Manual installation 39

1.2 Manual installation

This installation method is for advanced users who know what they are doing, all other users
should use the "Normal installation method” (page 27). The manual installation method
requires an environment which already has a web server, a database and etc. setup and
ready to go; eZ Publish needs to be downloaded and unpacked. Instead of running the setup
wizard, all configuration is done manually using the command line interface of the target
operating system. The following sections (depending on the target OS) will take you through
the necessary steps.

1.2.1 Manual installation / Requirements for doing a manual installation 40

1.2.1 Requirements for doing a manual installation

1

The requirements for doing a manual installation are the same as for the normal installation.
Please refer to the "Requirements for doing a normal installation” (page 28) section.

1.2.2 Manual installation / Manual installation on a Linux/UNIX based system 41

1.2.2 Manual installation on a Linux/UNIX based system

The requirements for doing a manual installation must be met. Please read the previous
section (page 40) if you're not sure about the requirements. Proceed only if you have access
to a UNIX based environment with Apache, PHP, MySQL or PostgreSQL already installed and
running. As mentioned earlier, the database server may run on a different computer than the
web server. A manual installation consists of the following steps:

* Setting up a database (MySQL or PostgreSQL)

* Downloading eZ Publish

* Unpacking eZ Publish

* Manual configuration of eZ Publish
The only difference between a normal and a manual installation is the last step. Instead of
running the web based setup wizard, eZ Publish is manually configured by editing a couple
of files. The first three steps are explained under the ”Installing eZ Publish on a Linux/UNIX

based system” (page 32) section. The last step is explained under the "Manual configuration
of eZ Publish” (page 43) section.

1.2.3 Manual installation / Manual installation on Windows 42

1.2.3 Manual installation on Windows

The requirements for doing a manual installation must be met. Please read the previous
section (page 40) if you're not sure about the requirements. Proceed only if you have access
to a Windows based system with Apache, PHP, MySQL or PostgreSQL already installed and
running. As mentioned earlier, the database server may run on a different computer than the
web server. A manual installation consists of the following steps:

* Setting up a MySQL database

* Downloading eZ Publish

* Unpacking eZ Publish

* Manual configuration of eZ Publish
The only difference between a normal and a manual installation is the last step. Instead of
running the web based setup wizard, eZ Publish is manually configured by editing a couple of
files. The first three steps are explained under the ”Installing eZ Publish on Windows” (page

36) section. The last step is explained under the "Manual configuration of eZ Publish” (page
43) section.

1.2.4 Manual installation / Manual configuration of eZ Publish 43

1.2.4 Manual configuration of eZ Publish

This section describes how to manually configure eZ Publish instead of using the setup wizard
to do all the work. Keep in mind that the manual installation method is for expert users only.
It should only be used by people who know what they are doing. The following steps will
work on both Linux/UNIX and Windows environments.

Database initialization

A clean eZ Publish database is created using two very important SQL scripts: "kernel schema”
and "cleandata” (note that an empty database should be created before launching these
scripts). The first of them initializes the necessary database structure and the second one
imports the pre-defined data to the database. While the “kernel schema” script differs for
each database engine, the “cleandata” script is the same for all solutions.

MySQL
Use the following command to run the MySQL specific "kernel schema” script:

$ mysql -u USERNAME -pPASSWORD DATABASE < PATH/kernel/sql/mysql/
kernel_schema.sql

In eZ Publish 4.0.1 and later versions, the script will use the InnoDB storage engine when
creating new tables. This storage engine is recommended (and will be required in the future)
for running eZ Publish on a MySQL database. Contact your database administrator if you are
unsure about whether InnoDB is available on your server.

In eZ Publish 4.0.0, the CREATE TABLE statements in the "kernel schema” script do not specify
which storage engine to use (no ENGINE or TYPE option), and thus the default storage engine
will be used. Normally, it is MyISAM. Because of this, it is highly recommended to set the
default storage engine to InnoDB before you run the “kernel schema” script (refer to the
MySQL documentation for information about how to set the default engine). Alternatively,
you can run the “kernel schema” script first and then convert the newly created tables to
InnoDB. You can either use the ”bin/php/ezconvertmysqltabletype.php” script for database
conversion (recommended) or convert the tables individually by using the following SQL
query for each table:

ALTER TABLE <name_of_table> TYPE = innodb;

Use the following command to run the generic "cleandata” script:

$ mysql -u USERNAME -pPASSWORD DATABASE < PATH/kernel/sql/common/
cleandata.sql

USERNAME The MySQL user (if no user is set up, use
"root”).

PASSWORD The password that belongs to the username.

DATABASE The name of the database, for example "my_

http://dev.mysql.com/doc/refman/5.0/en/storage-engines.html

1.2.4 Manual installation / Manual configuration of eZ Publish 44

database”.
PATH The full path to the root directory of your eZ
Publish installation, for example ”/opt/ezp”.

File permissions

Windows users can skip this part. If eZ Publish is installed on a Linux/UNIX based system,
some of the file permissions need to be changed. There is a shell script that takes care of this.
This script must be run, otherwise eZ Publish will not function properly. The script needs to
be run from within the eZ Publish directory:

$ cd /opt/ezp
$ bin/modfix.sh

Replace ”/opt/ezp” with the full path to the root directory of your eZ Publish installation.

The modfix script recursively alters the permission settings of the following directories inside
the eZ Publish installation:

* var/*

* settings/*
e design/*

* autoload/*

Note that due to a bug in eZ Publish 4.0.0, the modfix script did not alter the permission
settings for the ”autoload” directory. This problem was fixed in eZ Publish 4.0.1.

If you know the user and group of the webserver it is recommended to use a different set of
permissions:

chown -R user.usergroup var/ settings/ design/ autoload/
chmod -R 770 var/ settings/ design/ autoload/

The "user.usergroup” notation must be changed to user and group name that the webserver
runs as.

Configuring eZ Publish

The site.ini.append.php” configuration file located in the ”settings/override” directory of
your eZ Publish installation must be changed, or else eZ Publish will not function properly.
This file is the global override for the site.ini (page 2260) configuration file. There are a lot of
things that need to be configured (database, mail transport system, var directory, etc.). The
following text shows a generic example of a configuration that can be used:

http://issues.ez.no/13367

1.2.4 Manual installation / Manual configuration of eZ Publish 45

<7?php /* #7ini charset="utf-8"?

[DatabaseSettings]
DatabaseImplementation=ezmysql
Server=localhost
User=root
Password=
Database=my_database

[FileSettings]
VarDir=var/example

[Session]
SessionNameHandler=custom

[SiteSettings]
DefaultAccess=example
SiteList[]

SiteList []=example

[SiteAccessSettings]
CheckValidity=false
AvailableSiteAccessList[]
AvailableSiteAccessList []=example
AvailableSiteAccessList[]=example_admin
RelatedSiteAccessList[]
RelatedSiteAccessList []=example
RelatedSiteAccessList []=example_admin
MatchOrder=host;uri

Host matching
HostMatchMapItems []=www.example.com;example
HostMatchMapItems[]=admin.example.com;example_admin

[InformationCollectionSettings]
EmailReceiver=webmaster@example.com

[MailSettings]
Transport=sendmail
AdminEmail=webmaster@example.com
EmailSender=test@example.com

[RegionalSettings]
Locale=eng-GB
ContentObjectLocale=eng-GB
TextTranslation=disabled

*x/ 7>

In the example above the ”AvailableSiteAccessList[]” array located in the ”[SiteAccessSet-

1.2.4 Manual installation / Manual configuration of eZ Publish 46

tings]” section of this file determines the available siteaccesses (page 130) called "example”
and ”example admin”. The ”CheckValidity” setting located in the same section should be set
to false, otherwise the setup wizard will be initiated when trying to access the site.

In addition, two siteaccess configurations must be created, a public siteaccess ("example”)
and an administration siteaccess ("example admin”). The following sub-directories have to
be created in the root of your eZ Publish installation:

* settings/siteaccess/example

* settings/siteaccess/example admin

Both siteaccesses must have a file called "site.ini.append.php”.

The public siteaccess

The following text shows a generic solution for the "example” siteaccess:
<?php /* #7ini charset="utf-8"7

[SiteSettings]
SiteName=Example
SiteURL=www.example.com
LoginPage=embedded

[SiteAccessSettings]
RequireUserLogin=false
ShowHiddenNodes=false

[DesignSettings]
SiteDesign=example

[ContentSettings]
ViewCaching=disabled

[TemplateSettings]
TemplateCache=disabled
TemplateCompile=disabled
#ShowXHTMLCode=enabled
#Debug=enabled

[DebugSettings]
DebugOutput=enabled
Debug=inline
#DebugRedirection=enabled

[RegionalSettings]
SiteLanguageList[]
SiteLanguagelist []=eng-GB
ShowUntranslatedObjects=disabled

1.2.4 Manual installation / Manual configuration of eZ Publish 47

x/ 7>

The admin siteaccess
The following text shows a generic solution for the “example_admin” siteaccess:
<?php /* #7ini charset="utf-8"?

[SiteSettings]
SiteName=Example
SiteURL=admin.example.com
LoginPage=custom

[SiteAccessSettings]
RequireUserLogin=true
ShowHiddenNodes=true

[DesignSettings]
SiteDesign=admin

[ContentSettings]

CachedViewPreferences[full]l=admin navigation_content=0;
admin_navigation_details=0;admin_navigation_languages=0;
admin_navigation_locations=
0;admin_navigation_relations=0;admin_navigation_roles=0;
admin_navigation_policies=0;admin_navigation_content=0;
admin_navigation_translatio
ns=0;admin_children_viewmode=list;admin_list_limit=1;
admin_edit_show_locations=0;admin_url_list_limit=10;admin_url_view_1limit=10;
admin_sec

tion_list_limit=1;admin_orderlist_sortfield=user_name;
admin_orderlist_sortorder=desc;admin_search_stats_limit=1;admin_treemenu=1;
admin_boo

kmarkmenu=1;admin_left_menu_width=13

[DebugSettings]
DebugOutput=disabled
Debug=inline

[RegionalSettings]
SiteLanguageList[]
SiteLanguagelist []=eng-GB
ShowUntranslatedObjects=enabled

x/ 7>

Note that database settings, mail settings, regional and other settings defined in ”settings/
override/site.ini.append.php” will be used for each siteaccess regardless of what is specified

1.2.4 Manual installation / Manual configuration of eZ Publish 48

in the siteaccess settings. In the example above, the "Database=my database” is specified
under the ”[DatabaseSettings]” section of this file so this database will be used for both ”ex-
ample” and ”"example admin” siteaccesses. Refer to the ”Site management (page 130)” and
”Configuration (page 128)” sections of the "Concepts and basics” chapter for more informa-
tion.

Unicode support

There is no need to override the ”i18n.ini” configuration file since Unicode support is enabled
by default in eZ Publish 4.

Languages

Available languages and their priorities can be controlled per siteaccess using the ”SiteLan-
guageList (page 2359)” configuration setting located under the ”[RegionalSettings]” section
of the siteaccess ”site.ini.append.php” file. If this setting is not specified, the system will use
the old "ContentObjectLocale (page 2367)” setting and thus only the default language will be
shown. Refer to the "Configuring the site languages (page 237)” section for more information
and examples.

The "cleandata.sql” script creates only one language which is the British English (eng-GB).
All other languages should be added using the ”Setup - Languages” part of the administration
interface (http://admin.example.com in the example above).

Dynamic tree menu

If you have a large site with many nodes, it is strongly recommended to enable the "Dynamic
(page 1734)” switch for your administration siteaccess. This will make the left tree menu in
the administration interface work much faster and decrease the usage of network bandwidth.

Administrator’s login and password

The following username and password are set by the “creandata.sql” script and can be used
for logging in to the administration interface.

* Username: admin

e Password: publish
It is strongly recommended to change this password as soon as possible. Note that if you need

another username for site administrator, you can create a new administrator user, log in as
this user and remove the old one.

1.3 Automated installation 49

1.3 Automated installation

The automated installation method (also known as ”kickstart”) is for experienced users. It
provides an automated version of the "Normal installation method” and is designed for system
administrators who wish to roll out pre-configured installations of eZ Publish. This method
requires minimum interaction with the web based setup wizard and thus it can be used to
rapidly deploy eZ Publish on a massive scale. This method has the same requirements as
the ”"Normal installation” method. A typical automated installation process consists of the
following steps:

* Setting up / creating a database

* Downloading a packaged eZ Publish distribution

* Unpacking the eZ Publish distribution

* Configuring the “kickstart.ini” file

* Initiating the web based setup wizard

Once the web based setup wizard has completed, eZ Publish will be ready for use.

1

1.3.1 Automated installation / Requirements for doing an automated installation 50

1.3.1 Requirements for doing an automated installation

The requirements for an automated installation are the same as for the normal installation
method. Please refer to the "Requirements for doing a normal installation” (page 28) page
for more information.

At the minimum, a web server, a PHP engine, and a database server must be installed. Ad-
ditional server-side software is only necessary if the kick-start configuration file instructs the
system to make use of such software. For example, “ImageMagick” has to be available if it
has been specified as the primary image manipulation solution.

The next section (page 51) explains how eZ Publish can be configured to do an automated
installation of itself.

1.3.2 Automated installation / Automated installation of eZ Publish 51

1.3.2 Automated installation of eZ Publish

1

The requirements for doing an automated installation must be met. Please read the previous
section if you’re not sure about the requirements. This section will guide you through the
following steps:

* Setting up a database (MySQL or PostgreSQL)

* Downloading eZ Publish

* Unpacking eZ Publish

* Configuring the kickstart system

» Starting the installation by initiating the web based setup wizard
Depending on the target system, please refer to either “Installing eZ Publish on a Linux/UNIX
based system” (page 32) or "Installing eZ Publish on Windows” (page 36) for information

about the first three steps (database setup, download and unpacking). The rest of the steps
are explained below.

Configuring the kick-start system

The behavior of the automated installation is controlled by the ”kickstart.ini” configuration
file. This file makes it possible to specify parameters for each installation step of the web
based setup wizard. For example, by providing the database connection parameters, the

corresponding setup wizard step will have the input forms pre-filled. It is also possible to
instruct the wizard to skip certain steps.

Initialization
Create a copy of the "kickstart.ini-dist” file (located in the root of your eZ Publish installation)

and make sure that the copy is named “kickstart.ini” (located in the root of eZ Publish). The
following example shows how this can be done on a Linux/UNIX based system:

1. Navigate into the eZ Publish directory:

$ cd /path/to/ezpublish/

2. Copy and rename the configuration file:

$ cp kickstart.ini-dist kickstart.ini

Security issues

The web server must have read access to the "kickstart.ini” file during the installation pro-
cess. This might become a security problem at a later stage if the file contains usernames,
passwords, etc. To prevent this from happening, it is recommended to do one of the following:

1.3.2 Automated installation / Automated installation of eZ Publish 52

* Remove the file when the installation has completed.

* Use rewrite rules to make sure that it is not readable from outside.

Configuration blocks

The kickstart.ini” file contains a configuration block for every step of the setup wizard. The
block names are encapsulated by square brackets. The following list shows an overview of
the available blocks.

* [email settings]

* [database _choice]

* [database_init]

* [language options]

* [site_types]

* [site_access]

* [site details]

* [site admin]

* [security]

* [registration]
In the default kickstart file, everything is commented out. The blocks and the corresponding
settings have to be uncommented in order to take effect. This can be done by removing the

hash ("#”) characters from the start of the lines that you should be activated. Make sure that
there are no leading whitespace characters at the start of the lines.

Configuration parameters

Each parameter takes a text string as an input value. Some parameters are able to handle an
array of strings. The following examples demonstrate the two parameter types.

* Single parameter:

Server=www.example.com

* Array parameter:

Titlel[]
Title [news]=The news site
Title[forums]=The forum site

1.3.2 Automated installation / Automated installation of eZ Publish 53

Documentation and examples

The ”kickstart.ini” file contains documentation in the file itself. Please refer to the embedded
instructions and examples for a detailed explanation of the steps. The following table shows
how the examples / inline instructions deal with required and optional parameters.

Syntax Description
<value> Angle brackets indicate that the parameter
value is required, example:

#Server=<hostname>

[value] Squared brackets indicate that the parame-
ter value is optional, example:

#FirstName=[string]

A parameter will only take effect if it has been uncommented. Remove the leading hash ("#”)
and make sure that there ar no whitespace characters at the start of the lines that include the
uncommented parameters.

Skipping steps

A step can be skipped by uncommenting and setting the "Continue” parameter to "true”. This
parameter can be used for each step / block. The following table shows the outcome for the
different configurations of the "Continue” parameter.

Assignment Result

Continue=false The step will be shown and the input val-
ues will be pre-filled with the values (if any)
defined in the "kickstart.ini” configuration
file. This is the same as when the "Continue”
parameter is missing or if it has been com-
mented out.

Continue=true The system will automatically use the values
defined in the kickstart file and thus the step
will not be shown. However, if something
goes wrong (missing or wrong values, etc.),
the step will be shown.

Starting the installation

The installation can be started by initiating the web based setup wizard. Please refer to the
“Initiating the setup wizard” part of the "Normal installation” section.

1.4 The setup wizard 54

1.4 The setup wizard

This section contains a comprehensive guide through the web based setup wizard of eZ Pub-
lish. The setup wizard is designed to ease the initial configuration of the system. It can
be started using a web browser when the necessary installation steps (described in the pre-
vious sections) are completed. The setup wizard will automatically start the first time the
“index.php” file (located in the root of the eZ Publish directory) is accessed/browsed.

The setup wizard does not store or modify any data before the final step; thus, it can be
safely restarted by reloading the URL containing only the “index.php” part. The back button
(located at the bottom) can be used to jump back to previous steps in order to modify settings.
A typical setup cycle consists of 12 steps:

—_

Welcome page

System check

Outgoing E-mail

Database choice (optional)
Database initialization
Language support

Site selection

Access method

e oy s

Site details

=
e

Site security

[
—_

. Site registration

12. Finish

Note that some of the steps will be omitted when an eZ Publish bundle is being installed.

Welcome page

(see figure 1.1)

This is the initial page of the setup wizard. This step allows the user to select which language
that will be used during the installation process. In addition, the wizard also checks the
system configuration and displays a note if it is not optimal (in this case, an additional button
called "Finetune” will be available at the bottom of the page).

The system automatically pre-selects one of the languages according to your browser’s lan-
guage settings. You can choose another language by selecting the desired language using
the drop-down list. (The list of available languages is built using the INI files located in the
”share/locale” directory).

After you click "Finetune” (if available), the wizard will load the ”System finetuning” page,
which contains information about configuration issues. The following screenshot shows an
example of this page.

1.4 The setup wizard 55

) elEome to &2 publich - &2
Ede Edit Wiew Bookmarks Widgets Tools Help
IR N T]
a » Find e

7]

& eZ publish

Welcome to eZ Publish 4.0.0

Walcome 1o the 62 Publish content ayatem and [Ty

This wizard will help you 88t up €2 Publish.

our systam Is not optimal, f you wish you can click the Finefuns button. This will
presant hints on how 1o fix these issues.

Chck MNext to continus without finetuning.

Select Installation language:
English (United Kingdem) =

Finetune | Nexta|

Summary

Figure 1.1: Step 1: Welcome page

Flle Edit Yiew Booksarks Widgets Tooks Help

v R | -
o € v o DS [resihestbhenm LIMEN L
Q, P Find next :‘]Mwm = [K|snowimages 4 Fitto wim Qmo%;

Is eZ publish

System finetuning

There are some Issues that should be resolved 'Dw maximum pen‘ummoe and
features. A list of lssues |s presented below. Each section contains a description and a
suggested | recommended solution.

Once the issues are handled, you may click the Fingfune bution 10 continue, The sy stem
check will be run again. If everything s okay, the setup will go to the next stage. If the
Izswes are not solved the system finetune page will reappear.

11 you do nal wanl 1o fix these issues just click Mext.

Issues

1. PHP option Magic Quotes is enabled

&Z Publish will work with this oplion on however it will lead 15 oM Minar pefamande
Izsuae since all input varables nesd 1o be be convered back to mormai.

It is recommanded that the option is tumed off. To tum it off edit your php.ini
configuration and sel magic_quoles_gpc and magic_quoltes_nmiime to Of. More
Irfarmnation on the subject can be found at "

php.inl exampila:

TP
ARGl gustaE_runtins = 8

Altemativaly you may create a file called .htaccess in your eZ Publish root folder and
ackd the following:

hiaccess example:

FAP_nl un magin_quntes_gee 0

Figure 1.2: System finetuning

(see figure 1.2)

After you click "Next”, the wizard will either load the ”System check” page (if some critical
issues need to be fixed) or the "Outgoing E-mail” page (if everything is okay).

1.4 The setup wizard 56

System check

(see figure 1.3)

7 /860:640 - System check - e2 publish - Opera =10/ x|
==

| File Edt View Mavigation Bookmarks Mal Chat Tools ‘Window Help

Ehelalll ™ > e

- - - - S (B epitest.bh.ez.nof | | Googe search v @ 100% v o

IaeZ publish N

System check

There are some important issues that have to be resolved. & list of issues / problems is presented below. Each section contains 3 di
recommended solution.

Once the problems / issues are fized, you may click the Next button to continue, The system check will be run again. If everything is
stage. If there are problems, the system check page will reappear.

Some issues may be ignored by checking the fgnare this test checkbox(es); however, this is not recormmended.
Itis also possible ta do some finetuning of your system, dick Anetune instead Mext if you want to see the finetuning hints.

Issues

1. Insufficient directory permissions

82 publish cannot write to some important directories, without this the setup cannot finish and parts of 82 publish will fail.
The affected directaries are: setfings settings/override var var/storage varjcache el vess setlings/s nin design

Shell commands

These shell commands will give proper permission to the webserver,

od varsuwwstest

chnod -R ug+rvx settings settings/override var var/storage war/cache settings/siteaccess settings-/siteac
chown -R wwy—data wvw—data settings settings‘override var var/storage var<cache settings/siteaccess sstt
Alternative shell commands

If you don't have permissions to change the ownership you can try these commands,

od svarsuwwstest
chnod -R a+rwx settings settings-override var var/storage var/cache settings/siteaccess settings/siteacc

Ignore this test
< Bau

4l | LAY

Figure 1.3: Step 2: Issues

This page usually appears if critical issues/problems are detected. The setup wizard will
display information about the issues that need to be fixed and suggestions describing how
they can be fixed.

Issues

There may be several issues/problems. A suggestion to each problem is presented below the
description of the problem itself. The setup wizard will probably suggest the execution of mis-
cellaneous shell commands (in order to fix ownerships, permissions, etc.). These commands
must be executed using a system shell. Simply copy the commands from the browser window
and paste them into an open shell. The setup wizard will run the system check again when
the "Next” button is clicked. The ”System check” page will keep reappearing until all issues
have been fixed (or ignored, see the next section). Once everything is okay, the setup wizard
will display the next step.

Ignoring tests

Some issues/problems may be ignored using a checkbox labelled ”Ignore this test”. However,
it is recommended to fix all issues rather than ignoring them.

1.4 The setup wizard 57

Outgoing E-mail

(see figure 1.4)

7 /860:640 - Email settings - e2 publish - Opera N =10/ x|

| File Edt View Mavigation Bookmarks Mal Chat Tools ‘Window Help - 8%
N 0ol T Ermail settings - e2 publish |
- - - - D B apestoheznol =] [& Gsoge search [+ [100w [=] of -

Mu|eZ publish
etup

Outgoing E-mail

This section is used to configure how eZ publish delivers its outgoing E-mail.
There are two options:

- Direct delivery through sendmail (must be available on the server).

- Indirect delivery using an SMTP relay server,

E-mail delivery:
(» sendmail
) sMTR
Server name:
Username (optional):

Password (optional):

ivered through an
r. At the minimum,

your E-mail applics

Summary

System: oK
system: ImageMagick

Figure 1.4: Step 3: Outgoing E-mail

eZ Publish uses E-mail to send out miscellaneous notices. This step is used to configure how
eZ Publish delivers outgoing E-mail. There are two options:

* Direct delivery through sendmail (must be available on the server)

* Indirect delivery using an SMTP (Simple Mail Transfer Protocol) relay server

On Linux/UNIX: try to use sendmail; use SMTP if sendmail is unavailable. On Windows: use
the SMTP setting.

Sendmail
Mail is delivered directly using the sendmail transfer agent. The agent must be running on

the same host as the webserver is running on. The sendmail binary is usually available on
most Linux/UNIX systems. If sendmail is not available then SMTP should be used.

SMTP

Mail is delivered through an SMTP server. At the minimum, the hostname of the SMTP server
must be specified.

1.4 The setup wizard 58

Database type

(see figure 1.5)

Database choice - o2 publish - Opera
Rigaon Eockmaks Ml Chat Tods Wrdow heb

el - 055 o SR

SV P e rp——" =] (@ oo - e s f -

Ii eZ publish
Setup

Database:
MySOL
PesigeSOL

o MySOL Improved

Figure 1.5: Step 4: Database choice

The setup will automatically detect database support that has been made available for the
PHP scripting engine. If both MySQL and PostgreSQL are supported, the database choice
dialog will appear. If PHP is setup only to support one type of database, eZ Publish will
automatically use it and thus the database choice dialog will not be displayed.

Note that if the MySQLi extension is enabled in PHP, the "MySQL Improved” option will be
available on the list. If you are going to use a MySQL database, it is recommended to select
"MySQL Improved” instead of "MySQL”.

Database initialization

(see figure 1.6)

Information about the hostname of the server running the database engine, and a username/
password combination needs to be provided. After you click "Next”, if MySQL or MySQL
Improved are used, the setup wizard will attempt to connect to the database. The setup
will only continue if it is able to connect to the specified MySQL server with the specified
username/password combination. PostgreSQL parameters are tested at a later stage during
the setup wizard. (Note that even if the eZ Publish Extension for Oracle Database is installed,
the setup wizard will not let you use an Oracle database. The configuration must be done
manually as described in the documentation of the database extension.)

Language support

(see figure 1.7)

This step allows the user to choose a language configuration for the site that is being installed.
The setup wizard automatically pre-selects one of the languages according to your browser’s
language settings. Use the radio buttons to choose the default language (required), and the
checkboxes to choose the additional languages (optional). All the selected languages will be

http://php.net/mysqli

1.4 The setup wizard 59

1)860:640 base initalization - eZ publish - Opera IS =S|
|| Fle Edr View Mavigation Bookmarks Mal Chat Took Window Help - 8%
BT Il = Database mitalzation - o2 ... |

W e - - D[R hepitest.heznof [z |2 sooge search |=| @ 100% =] o G-

Mu|eZ publish

Database initialization

Please input database access information in the form below.

Database
Type MySQL

Servername: localhost

Username: root
Password:
Socket (optional):

<Back | Next >

Eile ot Yiew Bockmans Jook Help
o ® s D @nensnezno = A =l 6

F&eZ publish

Language support

Use e rado DuRons b choose the quage, and e 1o chacse
additional languages. You will e able to use any of the selected languages for
transiating your content. The defaull language wil deteming the locale setings and
will be used as e most pricrtzad language for your st.

DaetaultAddiional:
L[| Catalan
I} Chinese
| Gamch
| Danish
|| Dutch
[English {Australia)
|| English (Canada)
|| English (United Kingdom)
|| English (American)
] Castilan (Spain)
L Castitan
|| Finnish
|| Framch (Canada)
|| Fremch (France)
| German
| Habmaw
|| Hindi ndia)
) ! Hungarian
L Japanese
| Rorwaglan (Mynorsk)
) ! Morweglan (B okmal)
| Polish
|| Potuguese (Brast)
| Portuguese (Mozambigue)
Poruguese (Porugal)
| Russian
|| Shovak
|| Swadish
|| Turkish
| Usrainlan

Figure 1.7: Step 6: Language support

added to the system and put on the list of prioritized languages. You will be able to use any of
these languages for creating and translating your content after the setup wizard is finished.

1.4 The setup wizard 60

Note that choosing the default language at this step will determine default language, system
locale (page 233) and the most prioritized language for your site. If you select for example
”"German” as default language, then both locale and default language will be set to "ger-
DE”, your administration interface will be translated into German, and this language will be
recorded as the most prioritized one for your site. Languages can be reconfigured at any time
(even when a site is up and running) using the administration interface.

Note that regardless of the selected language configuration, the site will be created using
UTF-8 as the character set.

Site selection

(see figure 1.8)

file Edt Yiew Bookmars Took Help
ﬂmwu T Site salection - eZ potl. X | -

4 e b D [Promearneo =] z 60

Site package Help

Please choose a ste package you would like fo test or base your sile on. The type of site will choose some
basic sattings for toolbars, manus,

o «color and functionality. It I
[1| Plain site (ver. 1.1-2) Mol possible to change hese selings
Strippaed install. Contains no special ioolbar o

™ || menu cholces
"

at @ later ima.

Summary

System: oK
Depandencies Image system: imageMagick
! sendmall
Unknown,
Datatvase: My3aL
1 Not Language: eng-GB
‘Website Interface (ver. 1.3-0) Neit U
Wiebelle Inertace is 0 web based CMS solution fnhia
based on eZ Publish. |1 contans templates ang el
satlings thal meats the most common
requirements fior CONEN Management systems.

Dependencies
Unknewn,

2 Flow (ver. 1.0-0)

The eZ Flow exlension 1o eZ Publish enabies
editors bo bulld complex page layouts and pre-
Pian the pubiication schedule to ensure a
canetant fiow of nch contant

Upload package:

Figure 1.8: Step 7: Site selection

This step allows the user to select one of the standard site packages. These packages are
intended to provide basic examples mostly for the purpose of demonstration and learning.
However, it is possible to use them as a basic framework which you can extend/tweak in
order to make it suitable for a specific purpose. A demo site usually contains some artwork
(images), CSS code, actual content and template files. The plain type should be used when
starting from scratch.

The setup wizard automatically fetches the list of available site packages from remote and
internal repositories and asks the user to choose one. The default remote repository is
http://packages.ez.no/ezpublish/4.0. Note that it only contains the following three site pack-
ages:

http://packages.ez.no/ezpublish/4.0

1.4 The setup wizard 61

e Plain site
e Website Interface

e eZ Flow

Older site packages such as "News site”, ”Shop site” and "Gallery site” are currently not avail-
able for eZ Publish 4.

The wizard will automatically download the selected site package and all its dependent pack-
ages, import them to the system and display a list of successfully imported packages as shown
in the following screenshot. (This step will be omitted if all these packages are already stored
under internal repositories.)

(see figure 1.9)

opers

Eile Edit Yiew PBookmarks Jook Help

LTI Gl = i seecion- ezputi.. X || G-

o e > D 7 [@rmresrneno o= -

EeZ p(rubl_ish

2CTtUp

Site package Help

The type of site will choose some
Package 'eawebin_sie’ and It's dopandencies have boen downloaded basic settings for toolbars, menus,

successfully. Pross ‘Noxt to continue, color and funcionaity. It is
possble 1o change these setings
o a later ¥me.

Website Interface (ver. 1.3-0)

Websita Inlslace 15 3 web basad CMS schulion Summary

basex] on 6Z Publish. |t cortaing templales and

satiings thal mosts the most comman Systom: oK

requiremants for contar marsgoment systems. Imaga sysem: ImagoMagiek

Mail: sandmail

Databasa: MySOL

Languaga: norNO

ezwenin_exteraion ver.1.3); Imparted nusRU

ezwenin_banners [ver.1.3: Imparted ong-GB
ezwebin_site

Dependancies
erwenin_ciasses ver. 1.3} Imparted

ezwenin_dernccantent jver.1.3): Imported
eTweoin_design_oray (ver.1.3): Imparted
erwenin_design_biue [ver.1.3p Imparted

< Eaekl Naxt >

Figure 1.9: The list of imported packages

All dependent packages except for the site style package will be automatically installed.

Package language options

(see figure 1.10)

If the language configuration selected at the "Language support” step doesn’t match the lan-
guages used in the packages being installed, the “Package language options” interface will
appear as shown on the screenshot above. For example, the "Website interface” site package
makes it possible to have demo content created in 2 languages: English (United Kingdom)
and French. If the same languages are selected at the "Language support” step, the packages
will be installed silently. Otherwise, the user will need to specify how the system should
act towards the "superfluous” languages (i.e. languages that exist in the package but aren’t
present in the selected language configuration for the site). Possible actions are:

1.4 The setup wizard 62

Eile Ednt View Bookmasks Widgets Tools Help

A G-
o e v b D B epieathen =l e -
1= ¥ Find next |_1 Authormode = | Showimages ¢ Fitlo wean | 100% ¢

I eZ publish

sSetup

Package language options Help
e publish supports multipie
Language mapping languages.

The languages you have chosa for site do not maich languages in chosen packages,
To resclve conflict plesse select language mapping: SUmmary

Language Action Syatem: oK
French (France) Skip content in thes language =l : Imagodagick
sendmall

Figure 1.10: Package language options

* Skip content in this language

* Create language (extend the language configuration of the site and create demo content
in this language)

* Map to another language (use demo data to create content in another language)

Dealing with possible problems

If the web server is not able to contact the remote repository (due to firewall rules for exam-
ple), the setup wizard will display an error message at the ”Site selection” step. To fix this,
allow outbound connections to http://packages.ez.no in your firewall (port 80) or download
the packages manually.

Outbound connections via proxy

If you allow only outbound connections via a proxy server, then you need to configure eZ
Publish in the following way:

1. Create a file called ”site.ini.append.php” in the ”settings/override” directory and make
sure it contains the following lines:

[ProxySettings]
ProxyServer=proxy.example.com:3128
User=myuser

Password=secret

1.4 The setup wizard 63

Replace "proxy.example.com:3128” with the actual address and port number that can
be used to access the web through the proxy server. If the proxy server requires authen-
tication, you will also need to provide a valid username/password combination.

2. Restart the setup wizard.

Note that CURL support must be enabled in PHP, otherwise outbound connections via proxy
will not work.

Manual download of packages

If the wizard fails to connect the external packages repository, you can manually download
the desired site package and all the dependent packages it requires and then upload/import
them via the setup wizard. The following instructions reveal how this can be done.

1. Go to the packages download page. The ”Sites” section of this page contains the list of
available site packages including the following information for each of them:

* Name
* Description

* Dependencies (if any)

Click on the name of the desired site package to download it. (A package is downloaded
as an ”.ezpkg” file.)

2. Download all the dependent packages required by this site package (these are listed
under "Dependencies”). You can download a package by clicking on its name. The
packages are downloaded as ”.ezpkg” files.

3. Use the package import interface located at the bottom of the page in the setup wizard
to upload/import the downloaded site package (click the "Choose” button, select the
downloaded ”.ezpkg” file that contains the site package and click the "Upload” button).
The imported site package will appear on the list.

4. Upload/import all the dependent packages using the same import interface.

Note: it is also possible to download packages manually from the remote repository. The
following instructions reveal how this can be done.

1. Go to the packages repository, find the desired site package and download it manually.
(A package is downloaded as an ”.ezpkg” file.)

2. Unpack the ”.ezpkg” file into a temporary folder and view the ”"package.xml” file in
order to figure out which dependent packages are required (these are listed between
the <dependencies> and </dependencies> XML tags as described here). Download all
the dependent packages that are required.

http://www.php.net/curl
http://ez.no/download/ez_publish/ez_publish_4_stable_releases/4_0/packages/4_0_0
http://packages.ez.no/ezpublish/4.0

1.4 The setup wizard 64

Additional functionality

In eZ Publish 3.7 and earlier versions, the setup wizard included one more step called "Site
functionality” that allowed to select additional features that should be installed. This step
is no longer used. Additional functionality can be added after the setup wizard is finished
by downloading the desired packages from the ”"Content objects” section of the packages
download page, importing (page 323) the packages and installing (page 325) them.

Access method

(see figure 1.11)

1)860:640 - Site access - eZ publish - Opera =121
| Fle Edr view Mavigotion Bookmarks Mal Chat Tooks Window Help - alx
e TR

W D B hepftestbhennof =] | sooge search |z [100 [+] of -

& eZ publish
Setup

Site access configuration

Please choose the access method you wish to use for your site, The access
method determines how the site will be accessed from within a web browser. If
unsure: choose URL.

(@) URL (recommended)
() Port
() Hostname

< Back Next >

Ma
Databaze;
Language:

Site: Plain

64% completed

82 Publish™ copyright © 1999-2

Figure 1.11: Step 8: Site access configuration

This step allows the configuration of the access method that should be used when eZ Publish
receives a request. There are three options:

* URL

* Port

¢ Hostname

URL

When the URL access method is used, eZ Publish selects the site that should be accessed based
on the contents of the URL (in particular the part that comes right after ”index.php”). This is
the default and most generic option. It doesn’t require any additional configuration. Use this
setting when installing eZ Publish for the first time.

http://ez.no/download/ez_publish/ez_publish_4_stable_releases/4_0/packages/4_0_0
http://ez.no/download/ez_publish/ez_publish_4_stable_releases/4_0/packages/4_0_0

1.4 The setup wizard 65

Port

When the port access method is used, eZ Publish selects the site that should be accessed
based on a port number that is specified in the URL. The port number must be appended
to the hostname of the web server: "http://www.example.com:81/index.php”. This option
requires additional web server and firewall configuration. Use this setting only if you know
what you’re doing.

Hostname
When this access method is used, each site is assigned a unique hostname. For example,
"www.example.com” and "admin.example.com” can be assigned to the public and the admin-

istration interface respectively. This option requires additional web and DNS server configu-
ration. Use this setting only if you know what you’re doing.

Site details

(see figure 1.12)

Ele Edt View Bookmars Took Help

) e e O] T

W € > b & 7 |@mpareashene SEN =l 69

Site details Help

This page lots you modify information aboul e Sité you've chosen to install. In addifon, | SEEREFRIESEEL DTV
it also lets you choose a database for e site. aach site.

For more information about how 1o
configure sibe accoss, ploase
refar o he dooumant

Use the refresh bution to update
me database listng.

Summary

Dutalls for site:
Title: Plain site
Site url: Pttt bh.oz 0o

System: oK

Image system: inageMagick
Mail: sendmail
Usor path: plain_zito Database: MySaL
Admin pathc piain_site_admin Language: hun-HU
Database : | test - forNO

ang-GB
<Back| Refosn| Mexts|

plain_site

Figure 1.12: Step 9: Site details

This step allows the modification of settings related to the site that is being installed. Note
that the "User path” and ”Admin path” access values depend on which access method you
choose. When the port access method is used these values are port numbers. If you use the
URL access method then “User path” and "Admin path” should only contain letters, digits
and underscores. If the hostname access method is used then some additional symbols like
dashes, dots and colons are allowed whereas underscores aren’t.

The available databases will be displayed in the database drop-down menu. The "Refresh”
button can be used to update the list (if a database is being created at this point). It is required
that the database uses UTF-8 as character set.

1.4 The setup wizard 66

If the selected database already contains data, the ”Site Details” page will reappear and ask
what to do. Possible actions are:

e Leave the data and add new

* Remove existing data

Leave the data and do nothing

I've chosen a new database

Use the last option if another database has been chosen.

Site security

(see figure 1.13)

7 /860:640 - Site administrator - e2 publish - Opera =10/
| Fle Edk View Navigation Bookmarks Mal Chat Tooks Window Help)
T newpae B

‘Site administrator - eZ pub...

SRR R | T ee——" [=] [& Googe search [+ [100w [=] of -
% eZ publish
Cat

' L

Site administrator

This page lets you modify the administrator for your site. This ensures that your hanged. After the
site Is secure and has proper name and E-mail set. (I et o EEf
Administrator settings ¥ : and your
Login: admin
First name: Administrator SU mma ry
Last name: User
Svst "

E-mail address: test@example.com Sl Ok

1 Image system: ImageMagick
Password: kg kb "

Confirm password; | **** %%

. Language:
< Back Next >

Site:

78% completed

Figure 1.13: Step 10: Site administrator

This step suggests some basic modifications that should be carried out in order to secure
the site being installed. The suggested security tweak protects the configuration files from
unwanted access. Don’t worry about this unless you're setting up a site for public use.

Note that the administrator’s username (login) is set to "admin” by default and can not be
changed. If you need another username for site administrator, you can install eZ Publish,
create a new administrator user, log in as this user and remove the old one.

Site registration

(see figure 1.14)

1

1.4 The setup wizard 67

1/860:640 - Registration - eZ publish - Opera B AI.EIE]
| File Edt Wiew MNavigation Bookmarks Mall Chat Tools Window Help - %
Civewonee I

o - - - - D[R apiestoheznol |2l [Google search I oo =] o @8

ueZ p_ub\.ish
Setup

Site registration Help

nding registration the

If you wish, you can register this installation by sending some information to e2 ata will be sent to

systems. Mo confidential data will be transmitted and eZ systems will not use or
sell your details for unsalicited e-mails.

The registration e-mail: AT
Comments: N . . s
it info: i

Template - elin e

Uk - hetpsffrestbh.ez.nofplsin = da i im
Admin URL - hittp://ce st.bh,ez.nofplain_sdmin This data will help to im
Access type -u future releases of eZ pu
Access value - plain -

If you wish, you can also add some comments, which will be included in Ee
registration E-mail. Summa ry

Comments:

System: 0K
s : ImageMagick

hun-|
nor-No
Note: Sending out the e-mail and generating your site will take about 10 enll._] o
to 30 seconds depending on your machine, Please wait until the next page Site: Plain
Ioads. Clicking the button again will only send out duplicate e-mails, and
may corrupt the installation,

~'Send registration

< Back Next >

Figure 1.14: Step 11: Site registration

This step allows you to control whether the setup should send an information E-mail to eZ
Systems or not. The information will be used internally for statistics and for improving eZ
Publish. No confidential data will be transmitted and eZ Systems will not misuse or sell these
details. The following information will be sent:

* System details (OS type, etc)

¢ The test results

The type of database that is being used

The name of the site

The URL of the site

The languages that were chosen

Finished

(see figure 1.15)

The setup wizard has finished, eZ Publish is ready for use. Click on one of the links to access
the various interfaces (public site, administration interface, etc.).

Note that it is possible to restart the installation wizard after its successful finishing by specify-
ing "CheckValidity=true” in the ”settings/override/site.ini.append.php” file so that the setup
wizard will be initiated when trying to access the site.

1.4 The setup wizard

=10
| Fe Edk Wiew Mavigation Bockmarks Mal Chet Tooks Window Help -lax
T New page
Wy D (B hapitest.heznof =] | sooge search [+ @ oow [+] o G-

Finished

eZ publish has been installed with the following sites. You will find the username
and password mentioned for each site.

Note: The first time the user or admin site is accessed it will take some
time (30 ta 60 seconds). This is because eZ publish prepares the site for
your machine.

Title: Plain
URL: User site, Admin site
Username: admin

100% completed

Figure 1.15: Step 12: Finished

1.5 Virtual host setup 69

1.5 Virtual host setup

This section describes how to set up a virtual host for eZ Publish using the Apache web-server.
A virtual host setup is only needed if eZ Publish has been configured to use the host access
method, which is the most secure method.

By making use of virtual hosts, it is possible to have several sites running on the same server.
The sites are usually differentiated by the name they are accessed. Apache will look for a
specified set of domains and use different configuration settings based on the domain that is
accessed.

Generic virtual host setup

Virtual hosts are usually defined at the end of httpd.conf”, which is the main configuration
file for Apache. Adding a virtual host for eZ Publish can be done by copying the following
lines and replacing the text encapsulated by the square brackets with actual values. Please
refer to the next section for a real life example of using virtual hosts.

NameVirtualHost [IP_ADDRESSI]

<VirtualHost [IP_ADDRESS]: [PORT]>
<Directory [PATH_TO_EZPUBLISH]>
Options FollowSymLinks
AllowOverride None
</Directory>

<IfModule mod_php5.c>
php_admin_flag safe_mode Off
php_admin_value register_globals 0
php_value magic_quotes_gpc O
php_value magic_quotes_runtime O
php_value allow_call_time_pass_reference O
</IfModule>

DirectoryIndex index.php

<IfModule mod_rewrite.c>

RewriteEngine On

RewriteRule content/treemenu/? /index_treemenu.php [L]

RewriteRule ~/var/storage/.* - [L]

RewriteRule ~/var/["/]+/storage/.* - [L]

RewriteRule ~/var/cache/texttoimage/.* - [L]

RewriteRule ~/var/(["/]+/)7cache/(texttoimage|public)/.* - [L]

RewriteRule ~/design/[~/]+/(stylesheets|images|javascript)/.* - [L]

RewriteRule ~/share/icons/.* - [L]

RewriteRule ~/extension/[~/]+/design/[~/]1+/
(stylesheets|flash|images|javascripts?)/.* - [L]

Rewriterule ~/packages/styles/.+/(stylesheets|images|javascript)/[~/
1+/.% - [L]

RewriteRule ~/packages/styles/.+/thumbnail/.* - [L]

1.5 Virtual host setup 70

RewriteRule ~/favicon\.ico - [L]
RewriteRule ~/robots\.txt - [L]
Uncomment the following lines when using popup style debug.
RewriteRule ~/var/cache/debug\.html.* - [L]
RewriteRule ~/var/["/]+/cache/debug\.html.* - [L]
RewriteRule .* /index.php

</IfModule>

DocumentRoot [PATH_TO_EZPUBLISH]
ServerName [SERVER_NAME]
ServerAlias [SERVER_ALIAS]

</VirtualHost>

[IP ADDRESS] The IP address of the virtual host, for ex-
ample ”128.39.140.28”. Apache allows the
usage of a wildcards here ("*”).

[PORT] The port on which the webserver listens for
incoming requests. This is an optional set-
ting, the default port is 80. The combination
of an IP address and a port is often referred
to as a socket. Apache allows the usage of a
wildcards here (*”).

[PATH TO EZPUBLISH] Path to the directory that contains eZ Pub-
lish. This must be the full path, for example
”/var/wwwy/ezpublish-3.6.0”.

[SERVER NAME] The host or the IP address that Apache
should look for. If a match is found, the vir-
tual host settings will be used.

[SERVER ALIAS] Additional hosts/IP addresses that Apache
should look for. If a match is found, the vir-
tual host settings will be used.

Please note that the "mod rewrite” module must be enabled in ”httpd.conf” in order to use
the Rewrite Rules.

NameVirtualHost

The ”NameVirtualHost” setting might already exist in the default configuration.
Defining a new one will result in a conflict. If Apache reports errors such
as ”NameVirtualHost [IP_ ADDRESS] has no VirtualHosts” or ”“Mixing * ports and
non-* ports with a NameVirtualHost address is not supported”, try skipping the
NameVirtualHost line. For more info about the NameVirtualHost directive, see
http://httpd.apache.org/docs/1.3/mod/core.html#namevirtualhost.

SOAP and WebDAV

If you would like to use the SOAP and/or the WebDAV features of eZ Publish, you’ll have to
add the following lines in the virtual host configuration:

http://httpd.apache.org/docs/1.3/mod/core.html#namevirtualhost

1.5 Virtual host setup

71

RewriteCond
RewriteRule

RewriteCond
RewriteRule

ServerAlias
ServerAlias

%{HTTP_HOST} “webdav\..x*
~(.*x) /webdav.php [L]

%{HTTP_HOST} “soap\..*
~(.*) /soap.php [L]

soap.example.com
webdav.example.com

1.5.1 Virtual host setup / eZ JS Core rewrite rules 72

1.5.1 eZ JS Core rewrite rules
These re-write rules are described under the description of the eZ JS Core extension, but since

this extension is bundled with eZ Publish and as such an important part of the installation
process, please find the eZ JS Core rewrite rules described here as well.

Rewrite rules for lib folder

The eZ JSCore extension requires correct re-write rules in order to load the necessary yui
(vahoo user interface) files from the file system. This is required only when the INI setting
"ezjscore.ini[eZJSCore]LoadFromCDN” is disabled.

Add the following line to your Virtual-Host setup:
~/extension/[~/]+/design/[~/]+/(stylesheets|flash|images|1libl|javascripts?)/
- [L]

Rewrite rules for script/css packing

eZ JsCore packs javascript/css files together to decrease server requests and file size for faster

download. On eZ Publish 4.0.x you’ll need to make the following changes if you havn’t
already when installing ezoe (Online Editor 5.0).

e .htaccess

 from:

RewriteRule !\.(gifl|jpe?glpnglcss|jslhtml) |var(.+)storage.pdf(.+)\.pdf$
index.php

 to:

RewriteRule ! (\.(gif|jpe?glpnglcss|js|html?) |var(.+)storage.pdf(.+)\.pdf)$
index.php
* Virtual Host mode

 add:

RewriteRule ~/var/(["/]+/)7cache/public/.* - [L]

 If you don’t manage to get these working, you can disable this feature by
setting ezjscore.ini[eZJSCore]Packer=disabled

1.5.1 Virtual host setup / eZ JS Core rewrite rules 73

(optional) Speedup ajax calls

1

Copy or symlink index ajax.php from this extension to the root folder of eZ Publish (next to
index.php). Add the following rewrite rule:

e .htaccess

RewriteRule ezjscore/call.* index_ajax.php
RewriteRule “index_ajax\.php - [L]

* Virtual Host mode

RewriteRule ~/(["/]+/)7ezjscore/call.* /index_ajax\.php [L]

1.5.2 Virtual host setup / Virtual host example 74

1.5.2 Virtual host example

This example demonstrates how to set up a virtual host on the Apache web server for an
eZ Publish installation located in ”/var/www/example”. Let’s say that we want to access eZ
Publish by using the following URLs:

* http://www.example.com (actual website for public access)
* http://admin.example.com (administration interface for the webmaster)

In order to achieve this, we need to set up both eZ Publish and the web server so that they
respond correctly to the different requests.

eZ Publish configuration: siteaccess settings

eZ Publish needs to be configured to use the host access method. This can be done from
within the web based setup wizard or by manually editing the global override for the site.ini
configuration file: ”/settings/override/site.ini.append.php”. A typical configuration would
look something like this:

[SiteAccessSettings]
AvailableSiteAccessList[]
AvailableSiteAccessList[]=example
AvailableSiteAccessList[]=example_admin
MatchOrder=host

HostMatchMapItems []=www.example.com;example
HostMatchMapItems[]=admin.example.com;example_admin

This configuration tells eZ Publish that it should use the “example” siteaccess if a re-
quest starts with "www.example.com” and ”example admin” if the request starts with ”ad-
min.example.com”. For more information about site management in eZ Publish, please refer
to the ”Site management” part of the "Concepts and basics” chapter.

Apache configuration: virtual host settings

Assuming that...

* eZ Publish is located in ”/var/www/example”
* the server’s IP address is 128.39.140.28

e we wish to access eZ Publish using “www.example.com” and “ad-
min.example.com”

...the following virtual host configuration needs to be added at the end of "http.conf”:

1.5.2 Virtual host setup / Virtual host example 75

NameVirtualHost 128.39.140.28

<VirtualHost 128.39.140.28>
<Directory /var/www/example>
Options FollowSymLinks
AllowOverride None
</Directory>

<IfModule mod_php5.c>
php_admin_flag safe_mode Off
php_admin_value register_globals 0
php_value magic_quotes_gpc O
php_value magic_quotes_runtime O
php_value allow_call_time_pass_reference O
</IfModule>

DirectoryIndex index.php

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteRule content/treemenu/? /index_treemenu.php [L]
RewriteRule ~/var/storage/.* - [L]
RewriteRule ~/var/["/]+/storage/.* - [L]
RewriteRule ~/var/cache/texttoimage/.* - [L]
RewriteRule ~/var/[~/]+/cache/(texttoimage|public)/.* - [L]
RewriteRule ~/design/[~/]+/(stylesheets|images|javascript)/.* - [L]
RewriteRule ~/share/icomns/.* - [L]
RewriteRule ~/extension/["/]+/design/[~/]1+/
(stylesheets|flash|images|javascripts?)/.* - [L]
RewriteRule ~/packages/styles/.+/(stylesheets|images|javascript)/["/
1+/.% - [L]
RewriteRule ~/packages/styles/.+/thumbnail/.* - [L]
RewriteRule ~/favicon\.ico - [L]
RewriteRule ~/robots\.txt - [L]
Uncomment the following lines when using popup style debug.
RewriteRule ~/var/cache/debug\.html.* - [L]
RewriteRule ~/var/[~/]+/cache/debug\.html.* - [L]
RewriteRule .* /index.php
</IfModule>

DocumentRoot /var/www/example

ServerName www.example.com

ServerAlias admin.example.com
</VirtualHost>

Note that it isn’t necessary to create a separate virtual host block for "admin.example.com”,
it can be added to the existing block using the ”ServerAlias” directive.

You can have apachel and apache2 part in the sample vhost. That way allows to use one
vhost for both servers.

1.5.2 Virtual host setup / Virtual host example 76

<IfModule mod_phpb.c>
If you are using Apache 2, you have to use <IfModule sapi_apache2.c>
instead of <IfModule mod_php5.c>.
some parts/addons might only run safe mode on
php_admin_flag safe_mode Off
security just in case
php_admin_value register_globals 0
performance
php_value magic_quotes_gpc O
performance
php_value magic_quotes_runtime O
#http://www.php.net/manual/en/
ini.core.php#ini.allow-call-time-pass-reference
php_value allow_call_time_pass_reference O
</IfModule>

<IfModule sapi_apache2.c>
If you are using Apache 2, you have to use <IfModule sapi_apache2.c>
instead of <IfModule mod_php5.c>.
some parts/addons might only run safe mode on
php_admin_flag safe_mode Off
security just in case
php_admin_value register_globals 0
performance
php_value magic_quotes_gpc O
performance
php_value magic_quotes_runtime O
#http://www.php.net/manual/en/
ini.core.php#ini.allow-call-time-pass-reference
php_value allow_call_time_pass_reference 0
</IfModule>

1.6 Removing eZ Publish 77

1.6 Removing eZ Publish

This section describes how to completely remove an eZ Publish installation from a system.

Removing eZ Publish is done in four steps:

1. Deleting the eZ Publish directory
Removing the database

Reconfiguring Apache (optional)

=

Removing the cronjobs (optional)

WARNING! By following these steps, you will remove both eZ Publish and all the data/content
that you have put into the system. Everything will be lost.

Deleting the eZ Publish directory

Remove the eZ Publish directory using your favorite tool.

Linux/UNIX

On Linux/UNIX systems, the removal would most likely be carried out using the "rm” com-
mand:

$ rm -Rf /path/to/ez_publish

Please note that some file/directory permissions might be messed up. If this is the case, it will
prevent a regular user from removing all eZ Publish files. You’ll probably have to gain root
access to solve this problem.

Windows

Windows users may simply delete the eZ Publish directory using the "Explorer”.

Removing the database
MySQL

1. Start the MySQL client, log in using your username and password:
$ mysql -u <username> -p

If the username/password is correct, the client will then present a "mysql>" prompt.

2. Delete/remove the database using the drop command followed by the name of the
database used by eZ Publish:

1.6 Removing eZ Publish 78

mysql> drop database <database-name>;

PostgreSQL
1. Remove the database by executing the PostgreSQL dropdb command from shell:

$ dropdb <database-name>

Reconfiguring Apache (optional)

If a virtual host setup was used, it is likely that the Apache configuration file contains eZ
Publish specific settings. These settings will not be needed anymore and thus they can be
removed. Open the "httpd.conf” file using a text editor, scroll down to the bottom and remove
the eZ Publish specific virtual host settings. Remember to restart Apache after altering the
configuration file.

Removing the cronjobs (optional)

Windows users should skip this part. If cron was configured to run eZ Publish specific jobs,
then these will have to be removed. You may have to edit a global cron file (under ”/etc/
cron*”) or use the ”"crontab” command with the -e (edit) parameter to edit a user’s private
cron file. Remove the eZ Publish specific entries.

1.7 Extensions 79

1.7 Extensions

Extensions are plugins to eZ Publish, providing additional custom functionality. Various exten-
sions are available for eZ Publish. All of them require the same basic steps for an installation.
This chapter will show how to perform the following:

1. Extract the compressed archive containing the extension

2. Activate the extension

Some extensions might require further action to make them fully functional, e.g. creating new
database tables, adding certain content classes to eZ Publish, etc. Such additional measures
are explained in the documentation for each extension.

As outlined before, this section deals with the basic steps only. For demonstration purposes,
the installation will be examplified by an imaginery extension called ”ezfoo”.

1.7.1 Extensions / Extracting the files 80

1.7.1 Extracting the files

Each extension is distributed as a compressed archive. The name of the archive file includes
the name of the extension and its release version. Furthermore, the compression type is

” »

indicated by the file ending, either "tgz”, "tar.gz”, ”bz2”, or "zip”. For example:

* ezfoo-extension-1.0.tgz
* ezfoo-extension-1.0.tar.gz
* ezfoo-extension-1.0.bz2
* ezfoo-extension-1.0.zip

Windows users should download the ”zip” archive. Linux/UNIX users may download any
archive format as long as the necessary unpacking tools are available.

Extension base directory

Copy the downloaded archive into the ”extension” directory of your eZ Publish installation.
If this directory does not exist yet, then create it. (Do not create the directory with the plural
naming “extensions” - this is a common error.)

The following shell commands can be used to create the ”extension” directory and copy the
archive on a Linux/UNIX system:

mkdir /opt/ezp/extension/
cp /home/myuser/download/ezfoo-extension-1.0.tar.gz /opt/ezp/extension/

Replace ”/opt/ezp/” with the actual path to your eZ Publish installation and ”/home/myuser/
download/ezfoo-extension-1.0.tar.gz” with the actual path to the downloaded archive.

Unpack the archive

The archive should be unpacked inside the ”extension” directory. When done correctly, an
"ezfoo” directory will be created inside the "extension” directory.

See the following table for the correct shell command to use on a Linux/UNIX system, de-
pending on the compression type:

Archive type Command to extract
tar.gz or tgz

tar -zxvf ezfoo-extension-1.0.tar.gz

or
tar -zxvf ezfoo-extension-1.0.tgz

bz2

tar -jxvf ezfoo-extension-1.0.bz2

zZip

1.7.1 Extensions / Extracting the files

81

unzip ezfoo-extension-1.0.zip

On Windows, you can just unzip the ”zip” file using the built-in zip features.

At this point, the unpacked files should be available under “extension/ezfoo”.

1.7.2 Extensions / Activating the extension 82

1.7.2 Activating the extension

Each extension needs to be activated, which means that it is being registered for eZ Publish to
be available from within the eZ Publish framework. Every extension can either be activated in
the eZ Publish administration interface or in a configuration file. Furthermore, the activation
can be done either for the whole eZ Publish installation or for only certain siteaccesses.

Administration interface

Log in to your eZ Publish administration interface, click on the ”Setup” tab, and then click
“Extensions” on the left. You will see the list of available extensions with checkboxes. To
activate the sample extension, select "ezfoo” as shown in the screenshot below and click the
”Apply changes” button.

(see figure 1.16)

File Edit View Bookmarks ‘Widgets Tools Help

D (R T Extension configuratio... 'X | -
o« v & 7[R ntpiiocalhosts310/plain_site_admin/setup/extensions e 'L

Content structure Media library User accounts Webshop Design m My account

> Extension configuration

[sewr__f Avaiiable extensions [2] [curont usce R

Packag

A Clear cache |—
BAD
Roles and policles Quick settings <]

RSS

« Cache management Active Name Aamlnlstratnr User
@ Classes .) ™ o + Change Information
* Collected information « Change password
Extensions) ezfoo * Logout
 clonasetinos

@ Ini settings
* Languages .

« PDF export

-

L]

L]

-

Figure 1.16: Screenshot of the extension configuration in the administration interface.

This will activate the extension for all siteaccesses of your eZ Publish installation.

Configuration file

Alternatively, an extension can be enabled manually in the site.ini (page 2260) configuration
file.

1.7.2 Extensions / Activating the extension 83

Activating for the whole installation

To enable the sample extension for all of your siteaccesses, edit the ”site.ini.append.php” file
located in the ”settings/override” directory of your eZ Publish installation. Add the following
line under the ”[ExtensionSettings]” configuration block (page 128):

ActiveExtensions[]=ezfoo

Multiple extensions can be present within the ”[ExtensionSettings]” block. You’ll have to
manually create the file and/or the section if they do not exist.

Activating for a certain siteaccesses

To enable the sample extension for only a single siteaccess called “example”, edit the
“site.ini.append.php” file located in the ”settings/siteaccess/example” directory of your eZ
Publish installation. Add the following line under the ”[ExtensionSettings]” configuration
block:

ActiveAccessExtensions[]=ezfoo

Note that the line registering the extension is not called "ActiveExtensions”, but ”ActiveAc-
cessExtensions”. You’'ll have to manually create the file and/or the section if they do not
exist.

Updating the autoload arrays

After updating the configuration file(s), you need to run the ”ezpgenerateautoloads.php”
script, in order to add the information about all PHP class definitions of this extension to
the ”autoload/ezp_extension.php” file, otherwise eZ Publish might not be able to execute the
PHP code of the newly added extension. The following example shows how to run the script.

1. Navigate into the eZ Publish directory.

2. Run the script using the following shell command:

bin/php/ezpgenerateautoloads.php --extension

The script will look for class definitions in the ”extensions” directory and update the "au-
toload/ezp extension.php” file accordingly.

1.8 Troubleshooting 84

1.8 Troubleshooting

This section will explain what can be done if installation fails because of some unknown
reason. First of all, make sure that all the requirements (page 28) without exception are met.
The requirements are strict and extremely important. Please read them very carefully.

If all the requirements are met but you still have problems, it is recommended to check
the debug information during the installation process. To enable the debug output, do the
following:

1. Go to the "settings/override” directory of your eZ Publish installation.

2. Create a new file called ”site.ini.append.php” and put the following lines to it:

[DebugSettings]
DebugOutput=enabled

The debug output will appear at the bottom of the page as shown in the following screenshot.
(see figure 1.17)

The debug output will be displayed in the setup wizard, in the administration interface and on
the actual site. This option can be disabled at any time by replacing "enabled” with ”disabled”
in the same place of the configuration file.

Note that the ”"CheckValidity (page 2426)” setting located in the ”[SiteAccessSettings]” section
of the same file controls if the setup wizard should automatically start the first time the site
is accessed/browsed. If you want to restart the wizard after its successful finishing, you can
specify "CheckValidity=true” in the ”settings/override/site.ini.append.php” file so that the
setup wizard will be initiated when trying to access the site.

1.8 Troubleshooting

fle Edit Yiew Bookmarks Jook Help

‘,‘jﬂwma = Site

Site access configuration

Please choose Me access method you wish (o use for your site, The access method
now the site will be Trom within a web browsar, I unsure: chooss

URL.

Access method:
(@) URL frecommendad)

eZ debug
Quick settings:
= & Debug output
" Debug mdiection
| Template debug
'+ Inline template debug
| List of used templaies
| | S0L debug sutput

May 22 2006 151955
May 22 2006 151955
May 22 2006 15:10:55
wmloading file ‘var/zacke/packages/indes.anl® fron htep://packages.se.me/eepublioh/3, B/ indes. ol
May 22 2006 15:110:55
May 22 2006 15:19:35
May 22 2006 15:19:35

May 22 2006 15:19:35

Frerl 10491 TnARvn databass naavgen”

May 22 2006 15:19:35

wenurning assmyTeun

May 22 2006 15:19:55

! Anamymaas user not found, TeTarming ¥eumer

Figure 1.17: The debug output appears at the bottom of the page

Chapter 2

Concepts and basics

This part of the 4.x documentation is for eZ Publish 4.0, only reference section (page 491) is
common for all eZ Publish 4.x versions as well as eZ Publish 5.x "LegacyStack”, please select
the version you are using for the most up to date documentation!

The purpose of this chapter is to introduce and describe the most important concepts of
eZ Publish. A rookie developer should definitively read through this chapter in order to
understand the basic terms, models, structures and building blocks of the system.

This chapter is more generic than technical, it is meant to teach the concepts rather than
explaining details. People previously unfamiliar with eZ Publish should be able to collect
enough information in order to understand the following issues:

* The way eZ Publish is built up

* The main directory structure

* The concept and necessity of separating content and design

* How eZ Publish stores and manages content

* How eZ Publish handles issues related to design

* How eZ Publish manages different sites

* The concept of modules and views

* The way eZ Publish works with URLs

* The configuration system

* The structure of the workflow system

* How the access/permission system works

* How the webshop works

* A typical page request cycle

86

http://doc.ez.no/eZ-Publish/Technical-manual

2.1 The internal structure of eZ Publish 87

2.1 The internal structure of eZ Publish

This section describes the internal structure of eZ Publish by presenting an brief overview of
the different software-layers of the system. eZ Publish is a complex, object oriented applica-
tion written in the PHP language. The system consists of three major parts:

* Libraries

¢ Kernel

¢ Modules

The following illustration shows how the different parts of the system are connected.

(see figure 2.1)

@]
lw]
=
=
=
sy
o
=)
=
m
m
ezxml ezpdf ezwebdav
c
=
A

ezdb ezfile ezimage £

Figure 2.1: Libraries, kernel and modules.

The libraries

The libraries are the main building blocks of the system. These are reuseable general purpose
PHP classes. The libraries are in no way dependent on the eZ Publish kernel. However,
some of them are strongly interconnected and thus inseparable. People looking for general
PHP libraries should take a look in the ”lib” folder within the root directory of an eZ Publish
installation. The reference chapter contains a complete list and a short description of the
currently available libraries (page 2740).

The kernel

The eZ Publish kernel can be described as the system core. It takes care of all the low level
functionality like content handling, content versioning, access control, workflows, etc. The
kernel consists of various engines that build upon and make use of the general purpose li-
braries.

2.1 The internal structure of eZ Publish 88

The modules

An eZ Publish module offers an HTTP interface which can be used for web based interaction
with the system. While some modules offer an interface to kernel functionality, others are
more or less independent of the kernel. eZ Publish comes with a collection of modules that
cover the needs of typical everyday tasks. For example, the content module provides an
interface that makes it possible to use a web browser to manage content. The reference
chapter contains a complete list and a short description of all the currently available modules
(page 621). A module can be broken down into the following components:

e Views

¢ Fetch functions

A view provides an actual web interface. For example, the "search” (page 779) view of the
“content” (page 655) module provides a web interface to the built-in search engine. Every eZ
Publish module provides at least one view. A fetch function makes it possible to extract data
through a module from within a template. For example, the “current user” (page 945) fetch
function of the "user” (page 942) module makes it possible to access information related to
the user who is currently logged in. Some modules provide fetch functions, some don’t.

2.1.1 The internal structure of eZ Publish / Directory structure 89

2.1.1 Directory structure

The eZ Publish root directory contains multiple sub-directories. Each sub-directory is dedi-
cated to a specific part of the system and contains a collection of logically related files. The
following table gives an overview of the main eZ Publish directories.

Directory

Description

bin

The ”bin” directory contains various PHP,
Perl and shell scripts. For example, it con-
tains the ”ezcache.php” script which can be
used to clear all eZ Publish caches from
within a system shell. The scripts are mainly
used for manual maintenance.

cronjobs

The ”cronjobs” directory contains miscella-
neous scripts for automated periodical main-
tenance.

design

The ”design” directory contains all design
related files such as templates, images,
stylesheets, etc.

doc

The ”doc” directory contains documentation
and change logs.

extension

The ”extension” directory contains eZ Pub-
lish plug-ins. The extension system of eZ
Publish allows external code to plug in and
co-exist with the rest of the system. By using
extensions it is possible to create new mod-
ules, datatypes, template operators, work-
flow events and so on.

kernel

The "kernel” directory contains all the kernel
files such as the core kernel classes, mod-
ules, views, datatypes, etc. This is where
the core of the system resides. Only experts
should tamper with this part.

lib

The ”lib” directory contains the general pur-
pose libraries. These libraries are collec-
tions of classes that perform various low
level tasks. The kernel makes use of these
libraries.

packages

The "packages” directory contains the bun-
dled packages (themes, classes, templates,
etc.) that can be installed using either the
setup wizard or the administration interface.

settings

The ”settings” directory contains dynamic,
site specific configuration files.

share

The ”share” directory contains static config-
uration files such as code pages, locale de-
scriptions, translations, icons, etc.

support

The ”support” directory contains the source
code for additional applications that can be
used to do various advanced tasks. For ex-

2.1.1 The internal structure of eZ Publish / Directory structure 90

ample, it contains the ”lupdate” program
that can be used to create and maintain eZ
the translation files.

update The ”update” directory contains various
scripts that should be used when an eZ Pub-
lish installation is being upgraded.

var The "var” directory contains cache files and

logs. It also contains actual content that
doesn’t go into the database (images and
files). The size of this directory will most
likely increase as the system is being used.

2.2 Content and design 91

2.2 Content and design

This section explains the fundamental concepts of content and design. It is important to
understand what content and design actually are, how they interconnect and how the system
handles these fundamental elements.

Content

In the world of eZ Publish, content and design are separated. By content we mean information
that is to be organized and stored using some structure. For example, it may be the actual
contents of a news article (title, intro, body, images), the properties of a car (make, model,
year, color) and so on. In other words, all custom information that is stored for the purpose
of later retrieval is referred to as content.

Design

The information stored in a content structure must be presented somehow, preferably in a
way that is easily understood by humans. While content means actual data, design is all
about the way the data is marked up and visually presented. When talking about design,
we're talking about the things that make up a web interface: HTML, style sheets, images that
are not a part of the content, etc.

Templates

eZ Publish uses templates as the fundamental unit of site design. For example, a template
might dictate that a page should appear with the site’s title bar on the top, and then main
content in the middle. When the page is accessed, it then becomes the content management
system’s job to “flow” the content into the appropriate places in the template. An eZ Publish
template is basically a custom HTML file that describes how some particular type of content
should be visualized. In addition to standard HTML syntax, it is possible to use eZ Publish
specific code to for example extract content from the system. The HTML syntax in the built-
in/default templates follow the XHTML 1.0 Transitional specification.

The separation of content and design

While content is all about storing and structuring custom/raw data, the purpose of the design
is to dictate how the content should be visualized. The result of a combination of these
elements is a complete interface, as illustrated in the following diagram.

(see figure 2.2)

This distinction, and the system’s ability to handle it is one of the key features of eZ Publish.
The separation of content and design opens up an entire range of possibilities that simply
cannot be achieved otherwise. The following list outlines some of the most important benefits
of this technique:

* Content authors and designers can work separately without conflicts

2.2 Content and design 92

CONTENT DESICGN WEB PAGE

Love ipsum

Lovee ipvsuem dolor s amet

Lorem ipsum

Linae g
deior 34 wmet
consectetut

Bpaang 4l

300 0 musmod ’

rotina gee CARon LD
Laboris nis Ut P X 99
commad Eoniaduit

Figure 2.2: Content + Design = Web page

* Content can be published easily in multiple formats
* Content can easily be transferred and re-purposed

* Global redesigns/changes can be applied by simple modifications

2.2.1 Content and design / Storage 93

2.2.1 Storage

This section explains where eZ Publish stores information that belongs to a site (not the
system itself). A typical eZ Publish site consists of the following elements:

e Actual content
* Design related files

* Configuration files

Actual content is structured and stored inside a database. This is true for all content except
for images and files, which are stored on the file system. The main reason for this is because
the file system is much faster than the database when it comes to the storage and retrieval
of large data chunks. Having the files on the file system allows the web-server to serve them
directly without the need of going through the database. In addition, this technique makes
it easier to use external tools to manipulate/scan/index the contents of the uploaded files.
For example, the built in search engine is capable of using external utilities to index the
contents of miscellaneous files (PDF, Word documents, Excel sheets, etc.). Having the files
on the file system dramatically decreases the size of the database and thus makes it easier to
copy and handle. Everything that is related to design (template files, CSS files, non content
specific images, etc.) and configuration settings are also stored on the file system. A backup
of an eZ Publish site must therefore contain both a dump of the database and a copy of the
necessary files. The following illustration shows an overview of how the system makes use of
the database and the file system to store the different elements of a site.

(see figure 2.3)

DATABASE WEB PAGES

- - —

FILESYSTEM

4"’*

Content Design Settings
v Text
- ¥ Structure X X
« Images v HTML + CS55 Ini files

v Files + Templates

Figure 2.3: Storage overview

2.3 Content management 94

2.3 Content management

The role of a content management system is to organize and store content regardless of type
and complexity. The main goal of such a system is to provide a well structured, automated
yet flexible solution allowing information to be freely distributed and instantly updated across
various communication channels (such as the world wide web, intranets and miscellaneous
front and back-end systems). This section describes how eZ Publish actually handles content.

A typical example

Let’s consider a scenario at a university with a need of storing information about students.
Most off-the-shelf content management systems will offer a selection of built in content types.
There might for example exist a "Person” type, consisting of fields like "name”, ”birthdate”,
”phone number” and so on. However, the custom student data will probably not fit perfectly
into this predefined model since it might consist of information that is specific for the univer-
sity (for example student ID, department, etc.). Even though some systems allow the creation
of custom structures, the solution is often a complicated and time consuming process that
requires both programming and manipulation of the database. In addition, once the solution
is in use, future alternation of the structure itself will most likely become a problem.

Content management in eZ Publish

Unlike other content management systems, eZ Publish does not make use of a predefined
“one-size-fits-all” approach. Instead of desperately trying to fit data into predefined and rigid
structures, the system allows the creation of custom structures by the way of a unique object
oriented approach. For example, the site developer can build custom structures that perfectly
satisfies the storage needs of the university. This is one of the key features that make eZ Pub-
lish a flexible and successful system. In addition to offering the freedom of custom structures,
it also allows the modification of the content structures at runtime. In other words, if the
custom student structure used in the example above needs to be modified, then eZ Publish
will automatically alter it based on the administrator’s commands.

Although the possibility to create and modify content structures is a wonderful feature, there
isn’t always need for using it. This is why an eZ Publish distribution comes with a selection of
predefined content structures and thus allows the developer to choose between the following
scenarios:

* Use the standard/built-in structures

* Use modified versions of the standard/built-in structures

* Use only custom structures

e Use a combination of standard, modified and custom structures

An object oriented content structure

The eZ Publish content structure is based on ideas borrowed from the object oriented world
of popular programming languages like Smalltalk, C++, JAVA, etc. Superficially, object-
oriented means nothing more than looking at the world in terms of objects. In real life,

2.3 Content management 95

people are surrounded by several objects: furniture, cars, pets, humans, etc. Each of these
objects have traits that we use to identify them. This is also the way eZ Publish defines and
manages content.

The system offers a selection of fundamental building blocks and mechanisms that together
provide a flexible content management solution. An actual data structure is described using
something called a content class. A content class is built up of attributes. An attribute can
be thought of as a field, for example the ”birthdate” field in a structure designed to store
information about students. The description of the entire structure would be referred to as
the ”student class”. The characteristics of an attribute inside the class are determined by the
datatype that was chosen to represent that attribute.

It is important to understand that a content class is just a definition of an arbitrary structure.
In other words, the class itself describes the structure but it does not store any actual data.
Once a content class has been defined, it is possible to create instances of that class. An
instance of a content class is called a content object. Actual content is stored inside objects
of different types. A content object consists of one or more versions. The versioning layer
makes it possible to have different versions of the same content. Each version consists of one
or more translations. The translation layer makes it possible to represent the same version of
the same content in multiple languages. A translation consists of attributes. The attributes
are the final elements in the content structure chain, this is where actual data is stored.

The content objects are wrapped and organized by the way of nodes that are placed inside
a tree-like structure. This tree is often referred to as the node tree. The following sections
contain comprehensive explanations related to the elements that were introduced above.

2.3.1 Content management / Datatypes 96

2.3.1 Datatypes

A datatype is the smallest possible entity of storage. It determines how a specific type of in-
formation should be validated, stored, retrieved, formatted and so on. eZ Publish comes with
a collection of fundamental datatypes that can be used to build powerful and complex con-
tent structures. In addition, it is possible to extend the system by creating custom datatypes
for special needs. Custom datatypes have to be programmed in PHP. However, the built in
datatypes are usually sufficient enough for typical scenarios. The following table gives an
overview of the most basic datatypes that come with eZ Publish.

Datatype Description

Text line (page 570) Stores a single line of unformatted text

Text block (page 568) Stores multiple lines of unformatted text

XML block (page 577) Validates and stores multiple lines of format-
ted text

Integer (page 519) Validates and stores a numerical integer
value

Float (page 510) Validates and stores a numerical floating
point value

Please refer to the "Datatypes” (page 493) section of the reference chapter for a compre-
hensive list of all the built-in datatypes. Additional datatypes can be downloaded from
http://ez.no/community/contribs/datatypes; they are created by the members of the eZ Pub-
lish community.

Input validation

As the list above indicates, some datatypes take care of more than just storing data. For exam-
ple, the XML block” datatype apparently supports validation. This means that the inputted
XML will be validated before it is actually stored in the database. In other words, the system
will only accept and store the data if it is a valid XML structure. Input validation is supported
by most (but not all) of the built in datatypes. The validation feature of a datatype can not be
turned on or off. In other words, if a datatype happens to support validation, it will always try
to validate the incoming data and thus the system will never allow the storage of incorrectly
formatted input.

http://ez.no/community/contribs/datatypes

2.3.2 Content management / The content class 97

2.3.2 The content class

A content class is a definition of an arbitrary data structure. It does not store any actual data.
A content class is made up of attributes. The characteristics of an attribute are determined by
the datatype that is chosen for that specific attribute. By combining different datatypes, it is
possible to represent complex data structures. The following illustration shows the anatomy
of a content class called ”Article”, which defines a data structure for storing news articles. It
consists of attributes dedicated for storing the title, an introduction text and the actual body
of an article.

(see figure 2.4)

ARTICLE CLASS

Name Datatype
& Title Text line
g Intro Text line
E Body XML field

Figure 2.4: Example of a content class.

An eZ Publish distribution comes with a set of general purpose classes (page 594) that are
designed for typical web scenarios. For example, the default image class defines a structure
for storing image files. It consists of attributes for storing the name of the image, the actual
image file, the caption and an alternative image text. The built-in classes can be modified
in order to become more suitable for a specific case. In addition, it is possible to create
completely new and custom classes. Content classes can be created, modified and removed
easily using the administration interface. When a content class is removed, all instances
of that class (containing actual data) will also be removed from the system. The following
screenshot shows the class edit interface in action.

(see figure 2.5)

Class structure

A content class consists of the following elements:

* Name

* Identifier

* Object name pattern

* URL alias name pattern

* Container flag

* Default sorting of children

* Default object availability flag

e Attributes

2.3.2 Content management / The content class 98

' Edit <Documentation page> [Class]

Documentation page

Identifier:
documentation_page

Object name pattern:
<title=

URL alias name pattern:
<alias=>

Container:
v/

Default sorting of children:
Path String | * | Ascending | ¥

Default object availability:
v

Class attributes:
|| 1. Title [Text line] (id:188) [4] [#] ,

Name:
Title

Identifier:
title

v Required |v/Searchable | |Information collector | | Disable translation

Default value:

Figure 2.5: The class edit interface.

Name

The name is for storing a user friendly name which describes the data structure that the
class defines. A class name can consist of letters, digits, spaces and special characters. The
maximum length is 255 characters. For example, if a class defines a data structure for storing
information about graduate students, the name of the class would most likely be "Graduate
student”. This name will appear in various class lists throughout the administration interface,
but it will not be used internally by the system. If a blank name is provided, eZ Publish will
automatically generate a unique name when the class definition is stored.

Identifier

The identifier is for internal use. In particular, class identifiers are used in configuration files,
templates and in PHP code. A class identifier can only consist of lowercase letters, digits and
underscores. The maximum length is 50 characters. For example, if a class defines a data
structure for storing information about graduate students, the identifier of the class would
probably be “graduate student”. If a blank identifier is provided, eZ Publish will automatically
generate a unique identifier when the class definition is stored.

2.3.2 Content management / The content class 99

Object name pattern

The object name pattern controls how the name of an actual object (an instance of a class)
will be generated. A pattern usually consists of attribute identifiers (described later) that tell
eZ Publish about which attributes it should use when generating the name of an object. Each
attribute identifier has to be encapsulated by angle brackets. Text outside the angle brackets
will be included directly. If a blank pattern is provided, eZ Publish will automatically use the
identifier of the first attribute.

URL alias name pattern

The URL alias name pattern controls how the virtual URLs of the nodes will be generated
when the objects (instances of a class) are created. Note that only the last part of the virtual
URL is affected. The pattern works in the same way as the object name pattern. Text outside
the angle brackets will be converted using the selected method of URL transformation. If a
blank pattern is provided, eZ Publish will automatically use the name of the object itself.

Container flag

The container flag controls whether an instance of the class should be allowed to have sub
items (often called child nodes, children) or not. This setting only affects the administration
interface, it was added in order to provide a more convenient environment for administrators
and content authors. In other words, it doesn’t control any actual low level logic, it simply
controls the way the graphical user interface behaves.

Default sorting of children

From 3.9, it is possible to set the "default sorting of children” while editing the classes. When
new objects are created and their corresponding nodes appear in the tree, they will use the
sorting settings that were specified at the class level. In other words, if you set the "default
sorting of children” to priority/ascending for the ”"Folder” class, the sub items of newly created
folders will be sorted by their priorities, starting with the lowest priority.

Note that sorting parameters can always be changed for each individual node by using the
sorting controls located in the ”Sub items” window. Modifying the default sorting parameters
at the class level will not affect the nodes that encapsulate existing objects of the class (only
the nodes of newly created objects will be affected). Refer to ”sort method” and ”sort order”
for more information about sorting parameters.

Default object availability flag

This flag is related to the multi-language features that were added in eZ publish 3.8. It simply
dictates the default value of the ”object availability” flag for new instances (objects) of the
class. This flag can be further controlled (on the object level) by a checkbox labelled "Use
the main language if there is no prioritized translation” in the "Languages” window of the
administration interface. In other words, the object availability can be modified individually
for each object. When the flag is set, an object that does not exist in one of the site/prioritized

2.3.2 Content management / The content class 100

languages will be shown using it’s initial/main language. If the flag isn’t set, the object will
not be shown as long as it does not exist in one of the prioritized languages.

Attributes

As pointed out earlier, it is the structure and type of the attributes that make up the actual
data structure that the class defines. A content class must at least have one attribute. On the
other hand, a class can contain virtually an unlimited number of attributes. Class attributes
can be added, removed and rearranged at any time using the administration interface. If an
attribute is added to a class, it will be added to all current and upcoming instances of that
class. If an attribute is removed, it will also be removed from all instances.

Although it is possible to remove and add attributes using the administration interface, in
some cases these operations may corrupt the database. This usually happens when there
are too many instances that need to be updated. If the required processing time exceeds
the maximum execution time for PHP scripts, the sequence will be interrupted and thus the
database will most likely be left in an inconsistent state. At the time of writing, this problem
can only be solved by increasing the maximum execution time, which is defined in "php.ini”
as "max_execution_time”. The default value is 30 seconds, it should be increased to a couple of
minutes. A more reliable solution (a PHP script that takes care of adding/removing attributes
and run it from within a shell) will probably be added in the future.

2.3.3 Content management / Class attributes 101

2.3.3 Class attributes

A content class is made up of one or more attributes where each attribute is represented by
a datatype. The characteristics of an attribute are determined by the datatype that is chosen
for that specific attribute. An attribute is made up of the following elements:

* Name
¢ [Identifier

e Generic controls

* Datatype specific controls

Name

The name is for storing a user friendly name for the attribute. For example, if the attribute is
supposed to store birth dates, the name of the attribute would most likely be "Date of birth”.
This string will appear in various parts of the administration interface, but it will not be used
internally by the system. The name of an attribute can consist of letters, digits, spaces and
special characters. The maximum length is 255 characters. If a blank name is provided, eZ
Publish will automatically generate a unique name for the attribute when the class definition
is stored.

Identifier

The identifier of an attribute is for internal use. In particular, attribute identifiers are used
in configuration files, templates and in PHP code. An attribute identifier can only consist of
lowercase letters, digits and underscores. The maximum length is 50 characters. For example,
if the attribute is supposed to store birth dates, the identifier of the attribute would probably
be ”date_of birth”. If a blank identifier is provided, eZ publish will automatically generate a
unique identifier when the class definition is stored.

Generic controls

Each attribute has a set of generic controls. These controls are the same for each attribute,
regardless (but not independent) of the datatype that represents the attribute. The generic
controls are a set of switches that can be turned on or off:

* Required

* Searchable

¢ Information collector

e Translatable

2.3.3 Content management / Class attributes 102

Required

The required switch controls the behavior of the storage procedure for content objects (in-
stances of a content class). It can be used regardless of the datatype that represents the
attribute. When the required flag of an attribute is set, the system will keep rejecting the
inputted data until all required information is provided. If the required flag is unset, eZ pub-
lish will not care whether any actual data was provided or not. When an attribute is added,
the required switch is off. Please note that inputted data will be validated according to the
chosen datatype’s validation rules regardless of the state of the attribute’s required switch.
Input validation is supported by most (but not all) of the built in datatypes. The following
example demonstrates how these features actually work.

Let’s say that we have created a content class that defines a data structure for storing infor-
mation about prisoners. The class would typically consist of various attributes for storing
different kinds of data: name, identification number, date of birth, cell, block, etc. Having at
least the name and the birth date attributes required will eliminate the possibility of storing
convicts without names and/or birth dates. If the birth date attribute is represented by the
built-in “date” datatype, the system will only accept the input if the birth date is provided
using a correct date format.

Searchable

The searchable switch can be used to control whether the actual data stored using the at-
tribute should be indexed by the search engine or if it should be left unindexed. Search in-
dexing is supported by the majority of the built-in datatypes. Please refer to the "Datatypes”
(page 493) section of the reference chapter to see which datatypes that support search index-
ing.

Information collector

The information collector switch can be used to control the attribute’s behavior in view mode.
The default view mode behavior results in the display of the information that was provided
in edit mode. For example, when viewing a news article, the contents of the article are
displayed but can not be edited. However, if an attribute is marked as a collector, it will allow
information to be input in view mode. At first, this feature might seem a bit odd. However, it is
actually quite handy. For example, it can be used to quickly create simple feedback forms. The
contents of a form created using this technique will be e-mailed to the site administrator (or
to a specified address) once the form is submitted. Information collection is only supported
by a small set of the built in datatypes. The following example demonstrates how this feature
could be used to create a basic feedback form.

Let’s say that we have created a content class called "Feedback form” using the following
attributes: name, subject and message. The subject and the message attributes would be
marked as information collectors. When an instance of this class is viewed, the subject and
the message attributes will be displayed as input fields along with a "Send” button.

2.3.3 Content management / Class attributes 103

Translatable

The translatable switch controls whether actual data stored using the attribute should exist
in only one language (the default language) or if it should be possible to translate it using the
additional languages. The translation mechanism is completely independent of the datatype
layer. In other words, this switch can be used regardless of the datatype that was chosen to
represent the attribute.

When an attribute is added, the translation switch is “on”. Turning it off is typically useful
when the attribute is supposed to store non-translatable input. For example, translating dates,
numerical values, prices, email addresses, etc. doesn’t make much sense.

Datatype specific controls

An attribute can have a set of additional controls that are specific for the datatype that was
chosen to represent that attribute. Some datatypes allow fine grained customization, some
not. For example, the built-in "Text line” datatype provides two settings: default value and
maximum length.

2.3.4 Content management / The content object 104

2.3.4 The content object

A content object is an instance of a content class. While the class only defines the data
structure, it is the content objects themselves that contain actual data. Once a content class
is defined, several content objects / instances of that class can be created. For example, if a
class for storing news articles is created, several article objects (each containing a different
story) can then be instantiated. The following illustration summarizes and shows the relation
between datatypes, attributes, a content class and content objects.

(see figure 2.6)

ARTICLE CLASS

Name Datatype
g Title Text line
5 Intro Text line
E Body XML field

A TN

ARTICLE OBJECT ARTICLE OBJECT ARTICLE OBJECT

Title: Penguin Title: Scooter Title: Megaphone

Intro: The penguin is Intro: Sigge rides a Intro: Sigge has a
called "Sigge” yellow scooter megaphone

Body: He is an angry Body: He wants a Body: "So watch out!",
old penguin parking spot he shouts.

for his scooter

Figure 2.6: Datatypes, attributes, a content class and objects.

Please note that the illustration above is a simplified version of the reality. It doesn’t show
the exact structure of the objects since the versioning and the translation layers have been
left out. The following text gives a more in-depth explanation of the object structure. The
versioning and the translation layers will be explained in the upcoming sections.

Object structure

A content object consists of the following elements:

* Object ID

* Name

* Type

* Owner

* Creation time

* Modification time

e Status

2.3.4 Content management / The content object 105

e Section ID
¢ Versions

e Current version

Object ID

Every object has a unique identification number. The ID numbers are used by the system to
organize and keep track of different objects. These ID numbers are not recycled. In other
words, if an object is deleted, the ID number of that object will not be reused when a new
object is created.

Name

The name of an object is nothing more than a friendly name that appears in various lists
throughout the administration interface. It helps the user to identify different objects by their
names instead of having to deal with identification numbers. An object’s name is generated
automatically by the system when the object is published. It is the object name pattern
definition of a class that dictates how objects of that class should be named. This mechanism
makes it possible to automatically generate names based on the object’s attributes. Since the
object name is not used by the system, different objects can have the exact same name.

For example, when dealing with news articles, the title of the article would most likely be used
to generate the object names. When an article object is published, its name will be a copy
of the object’s title attribute. The name of the object will be updated every time the object is
published. In other words, if the title is changed, the object’s name will automatically also be
changed.

Type

The type information indicates which class that was used to create the object.

Owner

The object’s owner contains a reference to the user who initially created the object. At any
time, an object can only be owned by one user. This reference is set by the system the first
time the object is published. The ownership of an object can not be manipulated and will not
change even if the owner the object is removed from the system.

Creation time

The published field contains a time-stamp pinpointing the exact date and time when the
object was published for the first time. This information is set by the system and it can not be
modified. The published time-stamp will remain the same regardless of what happens to the
object.

2

2.3.4 Content management / The content object 106

Modification time

The modified field contains a time-stamp revealing the exact date and time when the object
was modified. This information is set by the system and it can not be modified. The modified
time-stamp will change every time the object is published.

Status

The status indicates the current state of the object. There are three possibilities:

¢ (0) Draft
e (1) Published
e (2) Archived

When initially created, the object’s status is set to draft. This status will remain until the
object is published and thus the status will be set to published. Once published, the object can
not become a draft. When a published object is moved to the trash, the status will be set to
archived. If a published object is removed from the trash (or removed without being put in
the trash first), it will be permanently deleted.

Section

The section ID of an object denotes which section that object belongs to. Each object can
belong to one section. By assigning different sections to objects, it is possible to have different
groups of objects. The section mechanism is explained under ”Sections” (page 124).

Versions

The actual contents of an object is stored inside different versions. A version can be thought
of as a timestamped collection of data (the object’s attributes) that belongs to a specific user.
Every time the contents of an object is edited, a new version is created. It is always the new
version that will be edited. The current / published version along with earlier versions will
remain untouched. This makes it possible to revert unwanted or accidental changes. An
object always has at least one version of its content. Each version is identified by a number
which is automatically increased for every new version that is created. The structure and
logic of the versioning mechanism is explained in the next section.

Current version

The current version is a number that pinpoints the currently published version of the object.
As described above, the contents of an object may exist in several versions. However, only one
of them can be the current version (also referred to as the published version). The current/
published version is the version that will be displayed when the object is viewed.

2.3.5 Content management / Multiple languages 107

2.3.5 Multiple languages

In addition to the versioning system, the content model of eZ Publish also provides a built-
in multi-language framework. This feature allows an object’s contents to exist in several
languages. The system is able to support up to 30 different languages at the same time.

The multi-language feature provides a generic one-to-one translation mechanism that can be
used to translate any kind of content. A one-to-one translation solution makes it possible to
represent the exact same content in multiple languages. For example, when a news article
is available in English, Norwegian and Hungarian (same content in all three cases), we say
that we have one-to-one translation of the content. The translation mechanism is completely
independent of the datatypes. In other words, any kind of content can be translated regardless
of the datatypes that are used to realize the content’s structure. It is possible to start with
only one language and when time comes, add translations and thus extend the spectrum of
the target audience.

The following illustration shows a simplified example of an object with two versions where
each version exists in several languages. A language in this case is often referred to as a
translation.

(see figure 2.7)

ARTICLE OBJECT

SYSTEM SPECIFIC ELEMENTS

Element Value

Object ID 13

Name "The penguin has a megaphone”

Type Article
[..] [.]

VERSIONS

Version Language Attributes and content

1 Title: [Penguins and mepaphanes.

English Intro: | First draft
Body: [8lah, biah, blah..

Version Language Attributes and content
2 Title: | The penguin has a megaphone
English INtro: | He knaws haw to use it

Body: *so watch outt®

E Title: [Pingwinen har en megafon

Norwegian INtro: Han ver bvordan den brukes
Body: :*sa pass derel®

Figure 2.7: Content object structure (with versions and translations).

As the illustration indicates, each version can have a different set of translations. At mini-
mum, a version always has one translation which by default is the initial/main translation.
The initial/main translation can not be removed. However, if the object exists in several lan-
guages, it is possible to select which of the translations that should be initial/main and thus
the previous initial/main translation can be removed.

It is important to note that from 3.8, when a user edits an object, it is no longer the entire

2.3.5 Content management / Multiple languages 108

version that gets edited. Instead, a combination of a version and a translation that is edited.
This approach avoids the locking of entire versions (along with all the translations) and thus
it allows multiple translators to work with the same content in several languages at the same
time.

The global translation list

An object can only be edited/translated using languages that exist in the global translation
list. Initially, this list contains the languages that were selected during step six of the setup
wizard. Additional languages can be added at any time while the site is up and running.
The following screenshot shows the global translation list as it appears in the administration
interface (under ”Setup” and “Languages”).

(see figure 2.8)

Available languages for translation of content :

% Language Country Locale Translations
| English (United Kingdom) United Kingdom eng-GB 31
[~ MAGerman Germany ger-DE 0
- = Norwedgian (Bokmal) MNorway nor-NO 4]
| Remove selec J | Add 1anguan J

Figure 2.8: The list of existing languages for translation of content

The global translation list simply keeps track of the languages that users are allowed to use
when editing/translating content. A translation added to the list will immediately become
available for use. Note that from 3.8, it is no longer possible to remove languages from the
global translation list unless they are not used by any objects. The global translation list is
capable of handling up to 30 languages.

Differences between 3.8 and earlier versions

In eZ Publish 3.7 and earlier versions, objects had to be created in the primary language
before they could be translated to additional languages. Multiple translators could not work
simultaneously because the edit process locked the entire version which also contained the
translations.

In eZ Publish 3.8, the primary language concept is gone and thus objects can be created using
different languages. This means that you can for example have an article available only in
English and another article available only in Norwegian. Multiple translators can work on
the same object because when editing, they actually edit the translation itself instead of the
entire version. This means that if you have written an article in English, different translators
can go ahead and add translations (for example Hungarian, Norwegian and Russian) to the
object simultaneously. They no longer have to wait for each other because they can work with
different translations at the same time on the same object. However, this also means that a
user can no longer work with multiple translations at the same time. The problem is that the
user must leave the edit interface in order to be able to add (and then edit) new translations
for an object. There are some other drawbacks as well. For example, unless a user is editing

2.3.5 Content management / Multiple languages 109

the very first version of an object, it is no longer possible to change the object’s locations from
the edit interface. However, the locations can still be changed using the "Locations” window
when the object isn’t being edited.

Whenever an object is published, the system automatically collects all the latest translations
that the previous version(s) of the object contains and puts them into the version being pub-
lished. The result is a version that contains all the up-to-date translations. The contents of an
object can be translated to a maximum number of 30 languages.

Please refer to the “"Updating INI settings for multi-language” part of the "Upgrading from
3.6.x (3.7.x) to 3.8.0” page for information about multi-language related INI settings.

Multilingual classes

From 3.9, it is possible to translate the class names and the attribute names. In other words,
you can for example have “Car” and ”Bil” as class names in English and Norwegian along
with "Top speed” and "Topphastighet” as attribute names. Refer to the "Translatable class
attributes (page 244)” documentation page for more information.

Non-translatable attributes

The data structure defined by a class is built up of attributes where each attribute is repre-
sented by a datatype. Among other things, an attribute of a class can be made translatable
or not. If an attribute is translatable, the system will allow the translation of its contents
when an object of that class is being edited. This is typically convenient when the attribute
contains actual text. For example, the written part of a news article can be translated into
different languages. However, some attributes are non-translatable by nature. This is typical
for images without text, numbers, dates, e-mail addresses and so on. Such attributes can be
made non-translatable and thus their contents will simply be copied from the initial/main
translation. The copied values can not be edited.

For example, let’s say that we need to store information about furniture in multiple languages.
We could build a furniture class using the following attributes: name, photo, description,
height, width, depth and weight. Allowing the translation of anything else then the descrip-
tion attribute would be pointless since the values stored by the other attributes are the same
regardless of the language used to describe the furniture. In other words, the name, photo,
height, width, depth and weight would be the same in for example both English and Nor-
wegian. Conversion between different measuring units would have to be done within the
template that is used to display the information.

Access control

It is possible to control whether a user (or a group of users) should be able to translate
content or not. This policy can be controlled on a class, section, language and owner basis.
In particular, the language limitation makes it possible to control which user (or user groups)
should be able to edit and/or translate different parts of the content using different languages.
In addition, it is also possible to control access to the global translation list. This makes it
possible to allow users other than the site administrator to add and remove translations on a
global basis.

2.3.5 Content management / Multiple languages 110

Please refer to the multi-language (page 229) part of the features section for further details.

2.3.6 Content management / The content node 111

2.3.6 The content node

When the system is in use, new content objects are created on the fly. For example, when a
news article is composed, a new article object is created. Obviously, the content objects can’t
just hover around in space, they have to be organized in some way. This is where the nodes
and the content node tree comes in. A content node is nothing more than an encapsulation
of a content object. In eZ Publish, every object is usually represented by one or more nodes.
The following illustration shows a simplified example of a node and a corresponding object
(which is referenced by the node) as it would have been represented inside the system.

(see figure 2.9)

OBJECT NODE

Figure 2.9: Object - node relation

The content node tree is built up of nodes. A node is simply a location of an object within the
tree structure. The tree is the actual mechanism used to hierarchically organize the objects
that are present on the system. The content node tree is explained in the next section.

Node structure

A content node consists of the following elements:

¢ Node ID

e Parent node ID

* Object ID

e Sort method

e Sort order

* Priority
Node ID
Every node has a unique identification number. The ID numbers are used by the system to
organize and keep track of the different nodes. These ID numbers are not recycled. In other

words, if a node is deleted, the ID number of that node will not be reused when a new node
is created.

Parent node ID

The parent node ID of a node reveals the node’s superior node in the tree.

2.3.6 Content management / The content node

112

Object ID

Every object that exists in the system has a unique identification number. The object ID of a

node pinpoints the actual object that the node encapsulates.

Sort method

The sorting method of a node determines how the children of the node should be sorted. The

following sorting methods are possible:

Method

ID

Description

Class identifier

6

The nodes are sorted by the
class identifiers of the ob-
jects.

Class name

The nodes are sorted by the
class names of the objects.

Depth

The nodes are sorted by
their depth in the tree. A
node further down in the
three has a higher level of
depth. The root node has a
depth of 1.

Modified

The nodes are sorted by the
modification time of the ob-
jects.

Modified subnode

10

The nodes are sorted based
on the modification time of
their children.

Name

The nodes are sorted by the
names of the objects.

Path

The nodes are sorted by
their path strings.

Priority

The nodes are sorted by
their priority. Every node
has a priority field that can
be set by the user. This so-
lution allows the nodes to
be sorted in a custom or-
der. The priority field is de-
scribed below.

Published

The nodes are sorted by the
creation time of the objects’
current/published versions.

Section

The nodes are sorted by the
section IDs of the objects.

Please note that it is possible to combine the available sort methods in order to sort nodes in a
more complex way. However, since a node is incapable of “remembering” a combination (you
can only set one method and one order for each node), this has to be done in the templates.

2.3.6 Content management / The content node 113

Sort order

The sorting order determines the order in which the children of the node should be sorted.
There are two possibilities:

* Descending (0 / FALSE)
* Ascending (1 / TRUE)
For example, if the sorting method is set to "Name” and the sort method is set to "Ascending”,

the underlying nodes will be alphabetically sorted from A to Z. If the sort method is set to
"Descending”, the underlying nodes will be sorted from Z to A.

Priority

The priority field allows a user to assign both positive and negative integer values to a node
(zero is also allowed). This field makes it possible to sort nodes in a custom way. If the
sorting method of a node is set to "Priority”, the children of that node will be sorted by their
priorities.

2.3.7 Content management / The content node tree 114

2.3.7 The content node tree

The content node tree is a hierarchical organization of the objects. Each leaf in the tree is
a node (also known as a location). Each node refers to one object. The usual case is that
an object is referenced by only one node. Because of the node-encapsulation of objects, any
type of content object can be placed anywhere in the tree. At the minimum, the tree consists
of one node, called the root node. The identification number of the root node is 1. The
root node is a virtual node, it does not encapsulate an actual object. A node that is directly
below the root node is called a top level node (the top level nodes are described in the next
section). The depth and width of the tree is virtually unlimited. The following illustration
shows a simplified example of how objects are referenced by nodes which together make up
the content node tree.

(see figure 2.10)

OBJECTS NODES

N

.‘
3341 3A0ON LNILNOD

Figure 2.10: Objects, nodes and the content node tree

The following illustration shows the same node structure seen from the outside world.

(see figure 2.11)

CONTENT NODE TREE

/N

/N

Name: About Name: Contact
Type: Article Type: Article
Object ID: 33 Object ID: 34
Node ID: 47 Node ID: 48

Figure 2.11: Content node tree

2.3.7 Content management / The content node tree 115

Multiple locations

An object may be referenced by several nodes, which means that the same object can appear
at different locations within the tree. This feature can for example be used to place a specific
news article at two locations: the front page and the archive. In the case of multiple nodes/
locations, only one node can be considered as the main node of an object. The main node
usually represents the object’s original location in the tree. The other nodes can be thought of
as additional nodes / locations. If an object is referenced by a single node then of course that
node would be the main node. Among other things, the main node is used to avoid multiple
search hits, infinite recursive loops, smart filtering, etc. The following illustration shows an
example of a structure where an object has multiple locations in the tree. It will simply be
empty and will have the possibility to contain a different set of sub items.

(see figure 2.12)

OBJECTS NODES
/N
aay

3341 3A0ON LNILNOD

Figure 2.12: Objects, node and the content node tree - multiple locations

The following illustration shows the same node structure seen from the outside world.

(see figure 2.13)

CONTENT NODE TREE

7N
\... 7N\

Name: Contact
Type: Article
Object ID: 33
Mode ID: 48

Figure 2.13: Content node tree with multiple locations

2.3.7 Content management / The content node tree 116

Pitfall

A very common mistake when planning the structure of a site is thinking of multiple locations
as shortcuts/links on a file system. Unfortunately, this is not how the node tree works. When
a new location is added to an object, eZ Publish will not go through and create replica of the
node structure below the object’s original location. For example, if a folder containing several
sub-folders with articles, images, etc. is assigned a secondary location, the sub-folders with
articles, images, etc. will not be automatically available below the new location of the folder.

Additional notes

Only published objects appear in the tree. A newly created object (status set to draft) does not
get a node assignment until the object is published for the first time. An object is considered
to be deleted (status set to archived) when all nodes referencing that object are removed from
the tree. A deleted object will appear in the system trash. It is important to understand that
the trash in eZ Publish is a flat structure. This is different from what people are used to from
the trash implementation in modern operating systems. Objects in the trash can be recovered
to their original locations. However, this is only possible if their original parent nodes have
not been deleted. Otherwise, the user must specify a new/alternate location for the objects
during recovery. Note that specifying an alternate/new location can be done regardless if the
system is able to restore a deleted object at its original location or not.

Furthermore, if a folder containing some news articles is deleted, both the folder and the
articles will appear on the same level within the trash. Recovering the folder itself will not
bring back the articles since the links between the folder and the articles got lost when the
nodes were deleted. In this case, the folder needs to be recovered first. After that, each article
has to be manually recovered and given a location.

2.3.8 Content management / Top level nodes 117

2.3.8 Top level nodes

A typical eZ Publish installation comes with the following set of top level nodes:

* Content
* Media
* Users
e Setup

* Design

The top level nodes can not be deleted. However, they can be swapped with other nodes. The
swap function can be used to change the type of a top level node. For example, the "Content”
node references a folder object. By swapping it with another node which refers to a different
kind of object, it is possible to change the type of the top level node itself. The following
illustration shows the virtual root node and the standard top level nodes:

(see figure 2.14)

-
/7
-~
-
—~
-
-
-

-

Figure 2.14: Top level nodes

Content

The actual contents of a site is placed under the "Content” node. This node is typically used
for organizing folders, articles, information pages, etc. and thus defines the actual content
structure of the site. A sitemap can be easily created by traversing the contents of this top
level node. The default identification number of the "Content” node is 2. The contents of this
node can be viewed by selecting the "Content structure” tab in the administration interface.
By default, this node references a "Folder” object.

Media

The "Media” node is typically used for storing and organizing information that is frequently
used by the nodes located below the "Content” node. It usually contains images, animations,
documents and other files. For example, it can be used to create an image gallery containing
images that are used in different news articles. The default identification number of the
"Media” node is 43. The contents of this node can be viewed by selecting the "Media library”
tab in the administration interface. By default, this node references a “Folder” object.

2.3.8 Content management / Top level nodes 118

Users

The built-in multi-user solution makes use of the native content structure of eZ publish. An
actual user is just an instance of a class that contains the "User account” (page 575) datatype.
The user nodes are organized within "User group” nodes below the “Users” top level node. In
other words, this node contains the actual users and user groups. The default identification
number of the "Users” node is 5. The contents of this node can be viewed by selecting the
“User accounts” tab in the administration interface. By default, this node references a "User
group” object.

Setup

The ”Setup” node contains miscellaneous nodes related to configuration and is used internally.
The default identification number of the "Setup” node is 48. By default, this node references
a "Folder” object.

Design

The "Design” node contains miscellaneous nodes related to design issues and is used inter-
nally. The default identification number of the "Design” node is 58. By default, this node
references a "Folder” object.

2.3.9 Content management / Node visibility 119

2.3.9 Node visibility

Since publishing means adding an object (by the way of a node) to the content tree, unpub-
lishing would imply the removal of the object from the tree. Once an object is published,
it can not be unpublished because eZ Publish does not provide such a feature. Instead, the
system provides a hiding mechanism which can be used to change the visibility of nodes. The
hide feature makes it possible to prevent the system from displaying the contents of pub-
lished objects. This is achieved by denying access to the nodes. A single node or a subtree of
nodes can be hidden either by a user or by the system. A node can have one of the following
visibility statuses:

¢ Visible
e Hidden

* Hidden by superior

All nodes are visible by default and thus the objects they reference can be accessed. A user
can hide or un-hide a node using the administration interface. Once a node is hidden, all
its descendants will automatically be marked "Hidden by superior” and thus the descendants
will also become hidden. A node can not become visible if its parent is hidden.

A hidden node will not be available unless the ”ShowHiddenNodes” directive within the
”[SiteAccessSettings]” block of a configuration override for ”site.ini” is set to true. The most

common way to use this setting is to disallow all but the administration interface to show
hidden nodes.

Implementation

Each node has two flags: "H” and "X”. While "H” means “hidden”, ”X” means "invisible”. The
hidden flag reveals whether the node has been hidden by a user or not. A raised invisibility
flag means that the node is invisible either because it was hidden by a user or by the system.
Together, the flags represent the three visibility statuses that were described above:

H X Status

- - The node is visible.

1 1 The node is invisible. It was
hidden by a user.

- 1 The node is invisible. It was

hidden by the system be-
cause its ancestor is hidden/
invisible.

If a user tries to hide an already invisible node then the node’s hidden flag will be set in
addition to the invisible flag. If a node is hidden and its parent becomes visible, the node will
remain hidden while the descendants will remain invisible. The following illustrations show
how the node hiding algorithm works.

2.3.9 Content management / Node visibility 120

Case 1: Hiding a visible node

The following illustration shows what happens when a visible node is hidden by a user. The
node will be marked hidden. Underlying nodes will be marked invisible (hidden by supe-
rior). The visibility status of underlying nodes already marked hidden or invisible will not be
changed.

(see figure 2.15)

BEFORE AFTER

\ /, \ \ /,. -\\

4 A Vi \
rd hY r N,

Invisible Invisible

V4
7

Invisible

Invisible Invisible

Figure 2.15: Hiding a visible node

Case 2: Hiding an invisible node

The following illustration shows what happens when an invisible node (hidden by superior)
is explicitly hidden by a user. The node will be marked as hidden. Since the underlying nodes
are already either hidden or invisible, their visibility status will not be changed.

(see figure 2.16)

BEFORE AFTER

Invisible Invisible Invisible
Invisible Invisible

Invisible Invisible

Figure 2.16: Hiding an invisible node

2.3.9 Content management / Node visibility 121

Case 3: Un-hiding a node with a visible ancestor

The following illustration shows what happens when a user un-hides a node that has a vis-
ible ancestor. Underlying invisible nodes will become visible. An underlying node that was
explicitly hidden by a user will remain hidden (and its children will be remain invisible).

(see figure 2.17)

BEFORE AFTER

7
i

Invisible
Invisible

Invisible Invisible

Figure 2.17: Unhiding a node with a visible ancestor

Case 4: Un-hiding a node with an invisible ancestor

The following illustration shows what happens when a user un-hides a node that has an
invisible ancestor. Since the target node is un-hided in a subtree that is currently invisible
(because a node further up in the hierarchy has been explicitly hidden), the node will not
become visible. Instead, it will be marked as invisible and will become visible when the
hidden superior node is un-hided.

(see figure 2.18)

BEFORE AFTER

i AY
s A

Invisible Invisible Invisible Invisible
\ / AN M / A

i

Invisible nvisible Invisible

Figure 2.18: Unhiding a node with an invisible ancestor

2.3.10 Content management / Object relations 122

2.3.10 Object relations

The content model of eZ Publish makes it possible to create relations between different ob-
jects. Any type of object can be connected to any other type of object. This feature is typically
useful in situations when there is a need to bind and/or reuse information that is scattered
around in the system.

For example, the concept of related objects makes it possible to add images to news articles.
Instead of using a fixed set of image attributes, the images are stored as separate objects
outside the article. These objects can then be related to the article and used directly in
attributes represented by the "XML block” (page 577) datatype. This approach is quite flexible
because it does not enforce any limitations when it comes to the amount and the type of
information that is to be included.

Relation types

A relation between two objects can be created either at the object level or at the object
attribute level. The system stores the different types of relations using the same database
table. An object can not have a relation to itself.

Relations at the object level

In eZ Publish 3.8 and earlier versions, the relations at the object level were generic and could
not be grouped in any way. From 3.9, there are three types of relations at the object level:

¢ Common

* XML linked

* XML embedded

Common

A relation of the "common” type is created when a user manually adds a content object to the
related object list of another object. (In most cases, this is done by using the “Related objects”
window in the object edit interface.) This method is always available for use.

XML linked

Whenever an internal link (a link to other node or object) is inserted into an attribute rep-
resented by the "XML block (page 577)” datatype, the system will automatically create a
relation of the XML linked” type. Note that a relation of this type is automatically removed
from the system when the corresponding "link” tag is removed from the content.

XML embedded

Whenever an ”"embed” tag is inserted into an attribute of the "XML block (page 577)”
datatype, the system will automatically create a relation of the "XML embedded” type, i.e.

2

2.3.10 Content management / Object relations 123

relate the embedded object to the one that is being edited. Note that a relation of this type is
automatically removed from the system when the corresponding “embed” tag is removed.

Relations at the attribute level

Relations of this type will be automatically generated whenever the "Object relation” (page
550) or the ”Object relations” (page 552) datatypes are used. While the first one allows only
a single relation, the second allows multiple relations. There is no grouping of the relations.
However, by making use of several attributes that are represented by one of these datatypes,
it is possible to create a custom structure with grouped relations.

2.3.11 Content management / Sections 124

2.3.11 Sections

A section is a number that can be assigned to an object. The section ID of an object denotes
which section the object belongs to. Each object can belong to one section. By assigning
different sections to objects, it is possible to have different groups of objects. Although the
sectioning mechanism is implemented at the object level, it is more likely to be used in con-
junction with the content node tree. This is why the administration interface makes it possible
to manage sections on the node level. Using sections makes it possible to:

* Segment the node tree into different subtrees

* Set up custom template override rules

¢ Limit and control access to content

* Assign discount rules to a group of products

A default eZ publish installation comes with the following sections:

ID Name Description

1 Standard The ”Standard” section is
the default section. The
”Content” top level node
makes use of this section.

2 Users The "Users” section is dedi-
cated for user accounts and
user groups that exist on
the system. The "Users” top
level node makes use of this

section.

3 Media The "Media” section is used
by the ”"Media” top level
node.

4 Setup The ”Setup” section is used
by the ”Setup” top level
node.

Section definitions can be added, modified and removed using the administration interface.
The following illustration shows an example of how the section feature can be used to seg-
ment the content node tree.

(see figure 2.19)

Behavior

When a new object is created, its section ID will be set to the default section (which is usually
the standard section). When the object is published, it will automatically inherit the section
that is assigned to the object encapsulated by the parent node. For example, if an object is
created in a folder that belongs to section 13, the section ID of the newly created object will
be set to 13. If an object has multiple node assignments then it is always the section ID of
the object referenced by the parent of the main node that will be used. In addition, if the

2.3.11 Content management / Sections 125

SECTION 1:
Main
/N
/ >
//‘ / \
SECTION 2: Articka SECTION 3:
News Company
/N /N
N\ N,
/ / \ N\

Article Article Article Article Article

Figure 2.19: Example of sections.

main node of an object with multiple node assignments is changed then the section ID of that
object will be updated.

The administration interface makes it possible to assign sections to objects using the node
tree. When a section is assigned to a node, the section ID of the object referenced by that
node will be updated. In addition, the section assignment of all subsequent children of that
node will also be changed. For example, if the section ID of a folder containing news articles
is changed, then the section ID of the articles in that folder will also be changed.

The removal of sections may corrupt permission settings, template output and other things
in the system. In other words, a section should only be removed if it is completely unused.
When a section is removed, it is only the section definition itself that will be removed. Other
references to the section will remain and thus the system will most likely be in an inconsistent
state. The section ID numbers are not recycled. If a section is removed, the ID number of that
section will not be reused when a new section is created.

2.3.12 Content management / URL storage 126

2.3.12 URL storage

Every address that is input as a link into an attribute using the XML block” (page 577) or
the "URL” (page 573) datatype is stored in a separate part of the database. Actual data
stored using these datatypes only contain references to entries in the separate URL table.
This feature makes it possible to inspect and edit the published URLs without having to in-
teract with the content objects. The addresses in the URL table can be checked by running
the ”linkcheck.php” script (which is also executed by the cronjob script) that comes with eZ
Publish. This script will simply check if the links in the table actually work by accessing them
one by one. If the target server of an URL returns an invalid response (404 Page not found,
500 Internal Server Error, 403 Access Denied, etc.) or if there is simply no response, the URL
will be marked invalid.

Keep in mind that if an URL is marked as invalid by this cronjob, the has_content attribute
for the matching attribute will return FALSE. The has_content attribute normally only returns
FALSE if the attribute has no content.

Invalid URLs and the objects that are using them can be easily filtered out and edited using the
”"URL management” part of the administration interface. An entry in the URL table consists
of the following data:

ID

* Address

* Creation time

* Modification time
* Last checked

e Status

Every URL has a unique identification number. The address contains the actual link. The
creation time is the exact date/time when the object containing that URL was published.
The modification time is updated every time the URL is changed using the URL management
part of the administration interface (and not when the object containing that URL is edited).
Whenever a URL is checked by the script, the last checked field will be updated. The status of
a URL can be either valid or invalid. By default, all URLs are valid. When the cronjob script
is running, it will automatically update the status of the URLs. If a broken link is found, its
status will be set to ”invalid”. Whenever an already existing URL is stored, the system will
simply reuse the existing entry in the table.

Please note that the link check script must be able to contact the outside world through port
80. In other words, the firewall must be opened for outgoing HTTP traffic from the web
server that is running eZ Publish.

2.3.13 Content management / Information collection 127

2.3.13 Information collection

The information collection feature makes it possible to gather user input when a node refer-
encing an information collector object is viewed. It is typically useful when it comes to the
creation of feedback forms, polls, etc.

An object can collect information if at least one of the class attributes is marked as an informa-
tion collector. When the object is viewed, each collector attribute will be displayed using the
chosen datatype’s data collector template. Instead of just outputting the attributes’ contents,
the collector templates provide interfaces for data input. The generated input interface de-
pends on the datatype that represents the attribute. The following table reveals the datatypes
that are capable of collecting information.

Datatype Input interface Input validation
Checkbox (page 497) Checkbox. No.
E-Mail (page 505) Single line of text. Yes.
Option (page 557) Radio buttons or a drop- | No.
down menu.
Text block (page 568) Multiple lines of unformat- | No.
ted text.
Text line (page 570) Single line of unformatted | No.
text.

The input interfaces must be encapsulated by an HTML form that posts the data using a sub-
mit button named ”ActionCollectInformation” to ”/content/action” (the ”action” (page 754)
view of the ”"content” (page 655) module). The submitted data will be stored in a dedicated
part of the database, separated from but related to the object itself. In addition, whenever
the object collects any data, the information can be sent to a specified E-mail address. The
”Collected information” section within the ”Setup” part of the administration interface can be
used to view and delete information that was collected through content objects.

2.4 Configuration 128

2.4 Configuration

This section explains the configuration model of eZ Publish. The default configuration files
end with a ”.ini” extension and are located in the ”/settings” directory. Each file controls
the behavior of a specific part of the system. For example, the “content.ini” file controls the
behavior of the content engine, the "webdav.ini” file controls the behavior of the WebDAV
subsystem, and so on. The main and most important configuration file is called ”site.ini”.
Among other things, it tells eZ Publish which database, design, etc. that should be used.
The default configuration files contain all the possible directives (with default settings) along
with brief explanations. These files files should only be used for reference. In other words,
they should never be modified. The “Configuration files” (page 1465) section of the reference
chapter contains a comprehensive explanation of the different configuration files and their
settings.

File structure

An eZ Publish configuration file is divided into blocks, each block contains a collection of
settings. The following example shows a part of the main (site.ini) configuration file.

This line contains a comment.
[DatabaseSettings]
Server=localhost

User=allman

Password=qwerty
Socket=disabled
SQLOutput=enabled

This line contains another comment.
[ExtensionSettings]
ActiveExtensions[]=ezdhtml
ActiveExtensions []=ezpaypal

The example above shows two blocks: ”DatabaseSettings” and ”ExtensionSettings”. Each
block has several settings which control the behavior of the system. A setting can usually
be set to enabled/disabled, a string of text or an array of strings. If the name of a setting
ends with a pair of square brackets, it means that the setting accepts an array of values.
In the example above, the ”ActiveExtensions” setting tells eZ Publish to use two different
extensions: “ezdhtml” and ”paypal”. Lines starting with a hash are treated as comments.

Configuration overrides

As pointed out earlier, the default configuration files should never be modified because they
will most likely be overwritten by a new set of files during an upgrade. Making a backup will
still not be sufficient because the configuration settings change over time. For example, a pre-
vious version of the files will not contain settings that were recently added. Because of these
issues, custom configuration settings must be placed elsewhere. Global configuration over-
rides can be placed in the ”/settings/override” directory . The settings of the configuration

2.4 Configuration 129

files located in this directory will override the default settings. The name of the configuration
files in the override directory must end with one of the following extensions:

e .ini.append

* .ini.append.php

If an override configuration file exist with both ”.ini.append” and ”.ini.append.php” exten-
sions, eZ Publish will process the one which ends with ”.php”. Because of possible security
issues, the latter (.ini.append.php) should be used; specially if eZ Publish is running in a non
virtual host environment. The ”.php” extension will trick the web server into handling the
configuration file as a PHP script. If someone attempts to read it using a browser, the server
will not display the contents. Instead, it will attempt to process it as PHP, which again will
not produce any output since the configuration settings are commented out (see below). This
method makes it more difficult for a hacker to get access to the configuration settings (for
example the database password) by attempting to access one of the configuration files from
outside. In order for this to work, the contents of the configuration file must be encapsulated
by a pair of PHP comment markers: /* and */. The following example shows how an override
(for example "test.ini.append.php”) should be set up:

<?7php /* #7ini charset="utf-8"7
These are my example settings
[ExampleSettings]

ExampleSettingOne=enabled
ExampleSettingTwo=disabled

*x/ 7>

The ”charset” directive reveals the character set that was used to construct the ini file (usually
UTE-8).

2

2.4.1 Configuration / Site management 130

2.4.1 Site management

A single eZ Publish installation is capable of hosting multiple sites by making use of some-
thing called the siteaccess system. This system makes it possible to use different configuration
settings based on a set of rules. The rules control which group of settings that should be
used in a particular case. The siteaccess rules must be specified in the global override for the
site.ini configuration file (”/settings/override/site.ini.append.php”).

Siteaccess

A collection of configuration settings is called a siteaccess. When a siteaccess is in use, the
default configuration settings will be overridden by the settings that are defined for the siteac-
cess. Among other things, a siteaccess dictates which database, design and var directory that
should be used (these are sometime referred to as "resources”). By making use of different
siteaccesses, it is possible to combine different content and designs. A typical eZ Publish site
consists of two siteaccesses: a public interface for visitors and a restricted interface for ad-
ministrators. Both siteaccesses use the same content (same database and same var directory)
but they use different designs. While the administration siteaccess would most likely use the
built in administration design, the public siteaccess would use a custom design. The following
illustration shows this scenario.

(see figure 2.20)

ACCESS RULES

Match criteria Siteaccess
- Wiww.example.com public
rd .
| admin.example.com admin

SITE ACCESSES

h public admin /
\ /
S Database: example Database: example

Design: public Design: admin A

Var: example Var: example
[[

o \ | N

example

DATABASE DESIGNS VAR DIRECTORY

S$32UWN0S3Y

Figure 2.20: Example of a setup with two siteaccesses.

A siteaccess is nothing more than a set of configuration files that override the default settings
when the siteaccess is used. A single eZ Publish installation can virtually host an unlimited
number of sites by the way of siteaccesses. The configuration settings for a siteaccess are
located inside a dedicated subdirectory within the ”/settings/siteaccess” directory. The name
of the subdirectory is the actual name of the siteaccess.

Rules for siteaccess names

2.4.1 Configuration / Site management 131

eZ Publish has a set of characters that are allowed for a siteaccess name. They are the al-
phanumerical characters (the [a-z], [A-Z] and [0-9] ranges), and the ”_” (underscore).

These are the simple rules for characters converting:

* Characters not in the previous list (alphanumerical and underscore) are replaced by an
” ” (underscore);

* Multiple consecutive ”” (double quotes) are replaced by a single quote;

7 7

* Leading and trailing ”.” are removed.

Examples: You can have an http://example.org/ and an http://admin.example.org/sites,
where the hostname is used for matching the SA. In this case, example.orgwill be changed to
example_org and admin.example.org to admin_example_org. Another example is an URL with
a space: http://example.com/main area/which would lead to SA ”main_area”.

The following illustration shows a setup with two siteaccesses: admin and public.

(see figure 2.21)

=] &7 publish
=] settings
= J siteaccess
1 admin
1 public

Figure 2.21: Siteaccess directory example.

When a siteaccess is in use, eZ Publish reads the configuration files using the following se-
quence:

0 Default configuration settings - /settings/*.ini?

1 Active extension siteaccesses - /extension/my extension/settings/siteaccess/my site/
* ini.append.php

2 Siteaccesses - /settings/siteaccess/my site/*.ini.append.php?

3 Active extensions - /extension/my_extension/settings/*.ini[.append.php]?

4 Global overrides - /settings/override/*.ini.append.php

In other words, eZ Publish will first read the default configuration settings. Secondly it will
read my site/*.ini.append.php to find the siteaccesses for the active extensions for the instal-
lation. Then it will determine which siteaccess to use based on the rules that are defined in
the global override for ”site.ini” (”/settings/override/site.ini.append.php”). When it knows
which siteaccess to use, it will go into the directory of that siteaccess and read the configu-
ration files that belong to that siteaccess. Next it will go into the configuration file for the
active extensions and read the configuration files for the active extensions. The settings of
the siteaccess will override the default configuration settings.

For example, if the siteaccess uses a database called “Amiga”, the system will see this and
automatically use the specified database when an incoming request is processed. Finally,
eZ Publish reads the configuration files in the global override directory. The settings in the
global override directory will override all other settings. In other words, if a database called
”CD32” is specified in the global override for ”site.ini” then eZ Publish will attempt to use that
database regardless of what is specified in the siteaccess settings. If a setting is not overridden

2.4.1 Configuration / Site management 132

by either the siteaccess or from within a global override then the default setting will be used.
The default settings are set by the ini files located in the ”/settings” directory.

The following figure illustrates how the system reads the configuration files using the ”site.ini”
file as an example. As already mentioned, settings placed in the override files will be used
instead of the default ones.

(see figure 2.22)

DEFAULT

SITEACCESS OVERRIDE

GLOBAL OVERRIDE

|

Final site.ini settings

Figure 2.22: Configuration override example.

Rules for Online Editor and extensions

This applies for Online Editor and other extensions:

if a configuration array is initialized in ”extension/<extension name>/settings/<ini file>"
and you want to insert a new value into this array:

1. Do not edit "extension/<extension name>>/settings/<ini file>", because it will be over-
written next time when you upgrade the extension.

2. Do not create "extension/<extension name>/settings/siteaccess/<siteaccess_name>/
<ini_file>”, because it will be overridden by ”extension/<extension name>/settings/<ini_
file>".

3. Do not create or edit "settings/siteaccess/ <siteaccess_name>/<ini_file>”, because it will
be overriden by “extension/<extension_name>/settings/<ini file>”.

4. To affect all siteaccesses where <extension name>> is used, specify new value in ”settings/
override/<ini file>".

5. To only affect a certain siteaccess, you need to use the following workaround:

- create a new custom extension specially for these settings: “extension/<custom_extension>/
»

- specify new value in “extension/<custom_extension>/settings/<ini file>"

- enable the custom extension for the target siteaccess by adding

ActiveAccessExtensions[]=<custom_extension>

to ’settings/siteaccess/ <siteaccess_name>/site.ini.append.php”
- make sure the configuration array is not re-initialized in ”settings/override/<ini file>" (if
exists).

Note: The name of <ini file> here should always contain either ”.append” or ”.append.php”
in the end. The only exception are default configuration files (for example ”settings/

2.4.1 Configuration / Site management 133

design.ini” or “extension/ezoe/settings/ezoe.ini”).

2.4.2 Configuration / Extension siteaccess settings 134

2.4.2 Extension siteaccess settings

The extension siteaccess settings makes it possible to place siteaccess specific settings in the
extensions.

The directory structure must be as follows :
extension/<my extension>/settings/siteaccess/<my siteaccess>/<file.ini.append.php>

Example:
extension/ezno/settings/siteaccess/ezno/override.ini.append.php :

<?php /*

[article_full_ezno]
Source=node/view/full.tpl
MatchFile=article/full.tpl
Match([class_identifier]=article
Subdir=templates

x/ 7>

Note:
All settings except debug settings and including/activating extensions can be set this way.

2.4.3 Configuration / Access methods 135

2.4.3 Access methods

Based on a set of rules, eZ Publish determines which siteaccess it should use every time it
processes an incoming request. The rules must be set up in the global override for the site.ini
configuration file: ”/settings/override/site.ini.append.php”. The behavior of the siteaccess
system is controlled by the "MatchOrder” setting within the [SiteAccessSettings] block. This
setting controls the way eZ Publish interprets the incoming requests. There are three possible
methods:

e URI
e Host

¢ Port

The following text gives a brief explanation of the different access methods. Please note that
the access methods can be combined. The documentation page of the "MatchOrder” (page
2438) directive reveals how this can be done.

URI

This is the default setting for the "MatchOrder” directive. When the URI access method is
used, the name of the target siteaccess will be the first parameter that comes after the ”in-
dex.php” part of the requested URL. For example, the following URL will tell eZ publish to use
the ”admin” siteaccess: http://www.example.com/index.php/admin. If another siteaccess by
the name of ”public” exists, then it would be possible to reach it by pointing the browser
to the following address: http://www.example.com/index.php/public. If the last part of the
URL is omitted then the default siteaccess will be used. The default siteaccess is defined by
the "DefaultAccess (page 2461)” setting within the [SiteSettings] block. The following exam-
ple shows how to set up ”/settings/override/site.ini.append.php” in order to make eZ publish
use the URI access method and to use a siteaccess called “public” by default:

[SiteSettings]
DefaultAccess=public

[SiteAccessSettings]
MatchOrder=uri

The URI access method is typically useful for testing / demonstration purposes. In addition
it is quite handy because it doesn’t require any configuration of the web server and the DNS
server.

Host

The host access method makes it possible to map different host/domain combinations to
different siteaccesses. This access method requires configuration outside eZ Publish. First of
all, the DNS server must be configured to resolve the desired host/domain combinations to

2.4.3 Configuration / Access methods 136

the IP address of the web server. Secondly, the web server must be configured to trigger a
virtual host configuration (unless eZ publish is located in the main document root). Please
refer to the "Virtual Host Setup” part of the installation chapter for information about how to
set up a virtual host for eZ Publish. Once the DNS and the web server is configured properly,
eZ Publish can be set up to use different siteaccesses based on the host/domain combinations
of the incoming requests. The following example shows how to set up ”/settings/override/
site.ini.append.php” in order to make eZ Publish use the host access method. In addition, it
reveals the basic usage of the host matching mechanism.

[SiteAccessSettings]

MatchOrder=host

HostMatchType=map

HostMatchMapItems []=www.example.com;public
HostMatchMapItems[]=admin.example.com;admin

The example above tells eZ Publish to use the "public” siteaccess if the requested URL starts
with "www.example.com”. In other words, the configuration files in ”/settings/siteaccess/
public” will be used. If the requested URL starts with "admin.example.com”, then the ad-
min siteaccess will be used. The example above demonstrates only a fragment of the host
matching capabilities of eZ publish. Please refer to the reference documentation for a full
explanation of the "HostMatchType” (page 2436) directive.

Port

The port access method makes it possible to map different ports to different siteaccesses. This
access method requires configuration outside eZ Publish. The web server must be configured
to listen to the desired ports (by default, a web server typically listens for requests on port 80,
which is the standard port for HTTP traffic). In addition, the firewall will most likely have
to be opened so that the traffic on port 81 actually reaches the web server. The following
example shows how to set up ”/settings/override/site.ini.append.php” in order to make eZ
Publish use the port access method. It also shows how to map different ports to different
siteaccesses.

[SiteAccessSettings]
MatchOrder=port

[PortAccessSettings]
80=public
8l=admin

The example above tells eZ Publish to use the "public” siteaccess if the requested URL is sent
to the web server using port 80. In other words, the configuration files inside ”/settings/
siteaccess/public” will be used. If the URL is requested on port 81 (usually by appending a
:81 to the URL, like this: http://www.example.com:81), then the admin siteaccess will be
used.

2.5 Modules and views 137

2.5 Modules and views

A module offers an HTTP interface which can be used for web based interaction with eZ
Publish. While some modules offer an interface to kernel functionality, others are more or
less independent of the kernel. The system comes with a collection of modules that cover
the needs of typical everyday tasks. For example, the content module provides an interface
that makes it possible to use a web browser to manage actual content. It is possible to
extend the system by creating custom modules for special needs. Custom modules have to be
programmed in PHP. The following table gives an overview of some of the most commonly
used modules that come with eZ Publish.

Module Description

Content (page 655) The ”"Content” module provides an interface
to the content engine in the eZ publish ker-
nel. This module makes it possible to dis-
play, edit, search and translate the contents
of objects, manage the node tree and so on.
User (page 942) The ”"User” module provides an interface to
the user management system in the kernel.
This module makes it possible to log users
in and out of the system. In addition, it also
provides functionality related to user regis-
tration, user activation, password changing,
etc.

Role (page 850) The "Role” module provides an interface to
the access control system in the kernel. This
module makes it possible to create, modify
and delete roles and policies. In addition, it
provides functionality for assigning roles to
different users and user groups.

Please refer to the "Modules” (page 621) section of the reference chapter for a comprehensive
list of all the built-in modules.

Module execution

Every time eZ Publish is accessed using a web browser, the client application indirectly in-
teracts with one of the modules that are present in the system. The requested URL tells eZ
Publish about which module it should execute in order to process the request. In particular,
the first part of the URL reveals the name of the module. This is usually the part that comes
directly after "index.php” unless the URI access method is used. The following example shows
a typical eZ Publish URL:

http://www.example.com/index.php/content/edit/13/03

A quick glance at this URL reveals that the request is directed at the content module. Another
typical example of an eZ Publish URL could be something like this:

2.5 Modules and views 138

http://wuw.example.com/index.php/user/login

By looking at the URL, we can immediately tell that eZ Publish will attempt to execute the
user module when processing this request. Obviously, some additional information is also
specified in the URLs. In the first example, the name of the module is followed by ”/edit/13/
03”. In the second example, the name of module is followed by ”/login”. These additional
strings control the behavior of the requested module and are explained below.

Module views

A module consists of a set views. A view can be thought of as an interface to a module. By
using views, it is possible to reach various functions that a module provides. For example,
among other things, the content module provides views for displaying, editing, searching and
translating the contents of objects. The name of the view that should be accessed appears
after the name of the module (separated by a slash) in the URL. In the first example above,
eZ Publish is instructed to access the "edit” view within the content module. In the second
example, eZ Publish is instructed to access the ”login” view within the user module.

When a view is called, eZ Publish starts up the program code that is associated with that view.
Upon completion, the view returns a result to the module, which in turn returns it to the rest
of the system. The result is put inside a template variable called $module result.content which
is available from the main template, the pagelayout. Please refer to the "Template generation”
section of the "Templates” chapter for more information about this part of the system.

View parameters

Some views support on one or more parameters. A view parameter makes it possible to pass
information to the view itself and thus allows the view to be controlled from within the
requested URL. The view parameters are appended after the name of the view in the URL.
In the first example above, the following parameters are passed to the view: ”13” and ”03”.
These parameters will instruct the edit view of the content module to provide an interface for
editing the third version of the thirteenth content object in the system. The URL given in the
second example does not make use of any view parameters. The view mechanism supports
two types of parameters:

* Ordered parameters

* Unordered parameters

The ordered parameters have to be separated by slashes and they must come after the name
of the view. In addition, they have to be provided in the same order as it is specified in the
module’s definition. For example, if the view parameters in the first example get mixed up, eZ
Publish will attempt to edit the thirteenth version of object number three (instead of version
number three of object number thirteen).

As the name suggests, the unordered parameters can be provided in an arbitrary order. If
the view supports ordered parameters, the unordered parameters must come after the or-
dered parameters If the view doesn’t support ordered parameters, the unordered parameters
will come directly after the name of the view in the URL. The unordered parameters must

2.5 Modules and views 139

be provided in pairs. A pair consists of the parameter’s name (between parenthesis) and
value separated by a slash. The following example shows an imaginary eZ Publish URL with
unordered parameters passed to the requested view:

http://www.example.com/index.php/video/dvd/ (button)/play

The address in the example above tells eZ Publish to run the imaginary "video” module and
execute the "dvd” view. A variable called "button” will be created and made available for the
view code. The value of the variable will be set to "play”. It is up to the PHP code of the view
to discover this variable and to carry out a necessary sequence of actions.

Another example: if the view ”"V” of the module "M” has the ordered param-
eters: A and B, and the unordered parameters C and D, the following possible
URLs can be written: (/<module>/<view>/[list-of-ordered-parameters/][(<unordered-
parameter-name)/<unordered-parameter-value>]):

/M/V

/M/V/foo (here parameter A = foo)

/M/V/foo/bar (here parameter A = foo, B = bar)

/M/V/foo/(C)/bar (here parameter A = foo, C = bar)
/M/V/foo/(D)/bar (here parameter A = foo, D = bar)
/M/V/foo/(D)/bar/(C)/baz (here parameter A = foo, C = baz, D = bar)

POST variables

Some views make use of parameters that are submitted by the way of forms through the
HTTP POST method. For example, the action view of the content module makes an extensive
use of POST variables.

GET variables

Views can also make use of parameters that are submitted through the HTTP GET method.
For example, parameters of the treemenu view within the content module are transferred
using GET variables.

The default request

In order to be able to produce proper output, eZ Publish must know which module it should
run and which view that should be executed. In other words, every URL has to contain
at least the name of an existing module and a view. If an incomplete or mistyped URL is
provided, eZ Publish will display an error page revealing what’s wrong (missing/mistyped
module or view). If the requested URL doesn’t contain anything after “index.php” (except
maybe a slash), the default module/view combination will be executed. The default module/
view combination can be configured using the "IndexPage” setting under ”[SiteSettings]” in
an override for ”site.ini”. The default setting is ”/content/view/full/2”. It instructs eZ Publish
to show a full view of node 2, the content top level node. In other words, if the following
request is made:

2

2.5 Modules and views 140

http://www.example.com/index.php

...eZ Publish will behave as if the following URL was requested:

http://www.example.com/index.php/content/view/full/2

No redirection or page reload will be made, which means that the address field of the browser
will remain unchanged.

2.6 URL translation 141

2.6 URL translation

This section explains the different URL types that can be used with eZ Publish and how the
URL translator works. By default, eZ Publish is capable of handling two types of URLs:
e System URLs

¢ Virtual URLs

System URLs

A system URL tells eZ Publish about which module that should be run and which view that
should be executed. It may contain additional parameters/values that are passed to the
view itself. Every system URL follows the same structure and can be broken down into the
following components:

* Module name

* View name

* View parameters
The view parameters are optional and may consist of ordered and/or unordered values. A
comprehensive description of the view parameters can be found in the "Modules and views”

(page 137) section. The following model shows the required sequence of the different URL
components:

http://www.example.com/index.php/<module>/<view>/[<ordered_view_parameters>]/
[<unordered_view_parameters>]

URL component Description

Module The name of the module that should be run.

View The name of the view that should be exe-
cuted.

Ordered view parameters Some views make use of ordered parame-
ters.

Unordered view parameters Some views make use of unordered param-
eters.

The following example shows a typical system URL:

http://www.example.com/index.php/content/edit/13/3

By looking at the URL, we can tell that it will instruct eZ Publish to run the "content” module
and execute the "edit” view. The values ”13” and ”3” are parameters that will be passed to the
view itself. Please note that the exact style of the URLs depend on the access method (page
135) that is used and the way the web server is configured. For example, the web server can
be configured to hide away the “index.php” part of the address.

2.6 URL translation 142

Virtual URLs

A virtual URL (also known as URL alias or nice URL) is nothing more than an alias for an
existing system URL. Virtual URLs are nicer, easier to remember and sometimes shorter than
system URLs. While system URLs reveal a great deal about what eZ Publish is instructed to
do, virtual URLs do not reveal any system specific information at all. A virtual URL can not be
broken down to components in the same way as a system URL. The following example shows
a typical virtual URL:

http://www.example.com/company/about

There are actually two types of virtual URLs, ones that are automatically generated and main-
tained by eZ Publish and ones that are created and maintained by the site administrator.
However, all virtual URLs are treated equally and thus they are handled in the same way.

From 3.10, multilingual virtual URLs (page 263) are supported. The system keeps track of
the URLs in a table which basically consists of three columns:

Virtual address Action Language mask
company/about eznode:46 2

An actual URL using the virtual address in the table above could be the following:

http://www.example.com/company/about

According to the table above, the virtual URL will be translated internally to the following
system URL:

http://www.example.com/content/view/full/46

Both URLs are perfectly valid and will produce the exact same output, in this case a full
view of node number 46. When the virtual URL is used, the redirection/mapping will be
done internally and thus the user will reach the target node without any glitches in form of
re-directions, page reloads, etc. The language mask field is used internally by the system to
identify which languages the alias is associated with (based on the same bit-field algorithm
(page 259) as for content objects).

If the site administrator creates a virtual URL for accessing the ”"content/search” interface, the
system will add a new entry to the table:

Virtual address Action Language mask
findme module:content/search 4

An actual URL using the virtual address in the table above could be the following:

http://www.example.com/findme

According to the table above, the virtual URL will be translated internally to the following
system URL:

2.6 URL translation 143

http://www.example.com/content/search

Automated virtual URL generation and maintenance

Every time an object is published, the system will automatically generate a virtual URL for
each of the object’s node assignments. If an object exists in several languages, the system
will generate virtual URLs for all translations. The generated URL for a node is based on the
node’s location in the tree and the name of the object that the node encapsulates. The virtual
URLs generated for the nodes are handled completely by the system and can not be changed
using the administration interface. The following illustration shows an example of objects,
nodes and corresponding URLs.

(see figure 2.23)

OBJECTS NODES

1
3341 300N LNILNOD

Source/virtual address

news. content/view/ full /45
company content/view, full /46
company/about content/view/ full /47

company,/contact content /view, full /48

Figure 2.23: Objects, nodes and nice URLs.

The example above clearly demonstrates how the virtual URLs are generated. For each node,
the system generates a path of strings separated by slashes. The strings in the path are the
names of the objects that are referenced by the nodes up to and including the target node.

In eZ Publish 3.9 and earlier versions, URL transformation rules were more restrictive and
only supported some ASCII characters (lowercase Latin letters from ”a” to ”z”, digits and
underscores). Special symbols were converted to underscores and special characters were
converted using the built in transliteration feature. For example, the Norwegian characters
777" and "¥” were converted to “ae”, "oe” and ”aa”. If the system was about to generate
a virtual URL that already existed, it would simply append an underscore at the end of the

newly generated address and thus the risk of having duplicate URLs was eliminated.

From 3.10, it is possible to enable Unicode support for the URLs and thus no transliteration
needs to be performed since most characters are allowed. If there are two nodes with identical
or almost identical names within the same location, the system will generate unique URL
aliases for newly introduced conflicting nodes by attaching numbers to their URL aliases (for
example, "Company”, "Company2”, "Company3” and so on).

2.6 URL translation 144

When the name of an object is changed, the system will take care of changing the virtual
URLs for the involved nodes. In addition, an internal redirection will be created, which will
make sure that the old URL still works. The old virtual URL will keep working until the exact
same URL needs to be generated for a node. In this case, the old virtual URL will be deleted.

Manual virtual URLs

It is possible to manually add, edit and remove virtual URLs using the administration interface
(both global aliases and node URL aliases). Refer to "Managing URL aliases (page 263)” for
more information. In addition, wildcard based URL forwarding is supported. (This feature
was removed when implementing the multilingual URLs functionality for eZ Publish 3.10.0
and then re-added in later versions.)

2

2.7 Designs 145

2.7 Designs

This section explains the concept of designs and how eZ Publish handles different designs.
As mentioned in the beginning of this chapter, design is all about the way actual content
is marked up and visually presented. When talking about a design, we’re talking about the
things that make up a web interface: HTML, style sheets, images that are not a part of the
content, etc. All files that are related to appearance reside in the ”design” directory. An
eZ Publish installation is capable of handling a virtually unlimited number of designs. Each
design has its own dedicated sub-directory within the main design directory. The name of
a sub-directory also functions as the actual name of a design. A typical eZ Publish design
consists of the following components:

* CSSfiles

* Image files

* Font files

* Template files
Among other things, a siteaccess dictates which design that should be used. By making use
of different siteaccesses, it is possible to combine different content and designs. A typical eZ
publish site consists of two siteaccesses: a public interface for visitors and a restricted inter-
face for administrators. Both siteaccesses use the same content (database and var directory)

but they use different designs. In particular, the administration siteaccess would most likely
use the built in administration design. The public siteaccess would use a custom design.

Default designs

An eZ Publish distribution comes with at least two default designs:

¢ admin

e standard

The ”admin” directory contains all design related files that make up the built in administration
interface. The "standard” directory contains a set of standard/default design related files such
as the default/standard templates, images, etc. The contents of these directories should not
be tampered with. Instead, custom designs should be used (if/when necessary). A custom
design can be added by creating a new subdirectory within the main ”/design” directory.

Design directory structure

All files that belong to a specific design are located inside the directory of that design. The
name of the directory also functions as the name for the design itself. An eZ Publish design
directory typically contains the following sub-directories:

Subdirectory Description
fonts Font files used by the “texttoimage” (page

2.7 Designs

146

1156) template operator which is capable of
visualizing text using truetype fonts.

images

Non-content specific images (banners, lo-
gos, graphical layout elements, etc.).

override

Custom templates that will be used by in-
stead of the default/standard templates.
These files will be triggered by template
override rules that are specified in a configu-
ration override for “override.ini”. Please re-
fer to "The template override system” (page
215) section of the "Templates” chapter for
more information about this feature.

stylesheets

CSS files.

templates

Main template(s) (for example the pagelay-
out, header, footer, etc.) and custom tem-
plates that will be used instead of the stan-
dard/default templates.

2.7.1 Designs / Design combinations 147

2.7.1 Design combinations

A siteaccess may make use of several designs. This means that the final result generated by
eZ Publish (the actual HTML) can be a combination of files originating from various designs.
A siteaccess is capable of using a combination of the following:

* One main design
* None or several additional designs

* One standard design

A siteaccess should always have at least a main design and a standard design. While the
main design can be set to anything, the standard design should not be modified. The default
configuration is to use the built-in standard design. It ensures that eZ Publish always finds
the necessary templates and thus any kind of content can be rendered without problems. A
more in-depth explanation is presented below.

Automatic fallback

If eZ Publish is unable to find a design specific file (a stylesheet, a template, an image, etc.)
within the main design, it will automatically attempt to locate the file elsewhere. The system
will sequentially go through all the additional designs (if specified), looking for the requested
file. At last, if the requested file still hasn’t been found, eZ Publish will attempt to locate the
missing file within the standard design. The following diagram illustrates this functionality.

(see figure 2.24)

DESIGN FALLBACKS

Request:
Locate and use =p —0 2> Use it!
example.tpl

snan e — P Use it!

== Use it!

Display error message

Figure 2.24: The design fallback mechanism.

Configuration

The different designs to be used by must be defined in the ”[DesignSettings]” block within an
override for the ”site.ini” configuration file. The following directives can be used:

2.7.1 Designs / Design combinations 148

* SiteDesign
* AdditionalSiteDesignList

* StandardDesign

The ”SiteDesign” directive specifies the main design. The "AdditionalSiteDesignList” directive
specifies an array of additional site designs. The ”StandardDesign” directive specifies the
standard design. Even though it is possible to change the standard fallback design, it is not
a good idea to do so. The ”StandardDesign” directive should always be set to the built-in
standard design. This is already defined in the default ”site.ini” file and thus there is no need
to set the standard design from within an override. If there is a need for a custom fallback
design, it should be specified using the "AdditionalSiteDesignList” setting. The automatic
fallback mechanism opens up for a lot of possibilities and flexibility. For example, it makes
the reuse and combination of designs an easy matter.

Example

The following example shows how to configure the following design settings in an override
for the ”site.ini” configuration file:

* "my design” should be the main design
* ”fallback one” should be the first additional design
 “fallback two” should be the second additional design

* ”standard” should be the standard fallback design

[DesignSettings]

SiteDesign=my_design
AdditionalSiteDesignList[]=fallback_one
AdditionalSiteDesignList[]=fallback_two
StandardDesign=standard

In this particular case, if eZ Publish is unable to find the requested file within the main design
“my design”, it will automatically fallback to the additional designs. At first, the system will
look for the requested file within the "fallback one” design directory. If the requested file is
not found, the system will look in the ”fallback two” design directory. If the file still hasn’t
been found, the system will attempt to locate it within the ”standard” design directory. The
standard directory will most likely contain the requested file (unless a custom template/
override is requested).

2

2.8 Access control 149

2.8 Access control

This section explains how eZ Publish manages user accounts and access permissions. The
system comes with a built-in access control mechanism that can be used to limit access to
content or to certain functions. The access control system is based on the following elements:

e User

e User group

* Policy

¢ Role

The following illustration shows the relations between the elements in the list above.

(see figure 2.25)

ROLE POLICIES

| Assigned to Assigned to J

I 7 N
<—|\Cor|5|5ts of o

USER GROUP USER

Figure 2.25: Users, groups, policies and roles.

A user defines a valid user account on the system. A user group consists of users and other
user groups. A policy is a rule that grants access to content or a certain system function. For
example, a policy may grant read access to a collection of nodes. A role is a named collection
of policies. A role can be assigned to users and user groups. The following text gives a more
in-depth explanation of the user/group/policy/role elements.

User

An actual user account is represented by a content object (with at least one node assignment)
that contains information about a specific user. The default "User” (page 619) class allows
the storage of the following elements: first name, last name, E-mail, username and password.
The last three elements (E-mail, username and password) are provided by the "User account”
(page 575) datatype. This is a special datatype which plugs more deeply into the system.

2.8 Access control 150

Instances of any content class containing the "User account” datatype will function as valid
users on the system. In other words, if there is a need to store additional information about
users, it is possible to either modify the default user class or to create a custom class that
contains the datatype.

Enabled and disabled user accounts

The user accounts can be enabled or disabled from within the administration interface. When
disabled, an account will continue to exist, but the user will not be able to log in until the
account is enabled. Newly created accounts are enabled by default.

Locked and unlocked user accounts

In addition to being enabled and disabled, user accounts can be locked and unlocked. An
account will be automatically locked by the system if the maximum number of failed login
attempts (page 2511) is exceeded. A failed login attempt is a combination of a valid username
and an invalid password. Once an account is locked, its owner will not be allowed to log in
until the account is either unlocked by another user with administrator privileges or if the
login request is coming from a trusted IP address / range.

The number of failed login attempts are stored in a database table called "ezuservisit”. An
account’s failed login counter is automatically reset upon a successful login. In other words,
as long as you log in with a valid username/password combination, the failed login attempt
counter associated with your account will be zero.

E-mail

Note that the default configuration does not allow different users to be registered with the
exact same E-mail address. This is just a built-in precaution mechanism which can be easily
turned off by setting the "RequireUniqueEmail” directive within the [UserSettings] block of a
configuration override for ”site.ini” to "false”.

User ID

Every user has a unique identification number which is the same as the ID number of the
actual object that represents the user account. Among other things, the user IDs are used
by other objects on the system. In particular, an object contains references (by the way of
user IDs) to the initial creator and to all users who have created versions within that object.
Removing a user account might lead to an inconsistent state where objects have owner/
modifier references to nonexisting user accounts. Because of this, it is not recommended to
remove users from the system, the accounts to be removed should be disabled instead.

User group

A user group is a content object (with at least one node assignment) that contains user ac-
counts and other user groups. In other words, a user group is just a collection of users (similar
to a directory containing files and sub-directories on a file system).

2.8 Access control 151

Policy

A policy is a rule that grants access to a specific function or all functions of a module. A policy
consists of the following elements:

e Module name
¢ Function name

¢ Function limitation

The module name reveals the actual module that the policy grants access to. The function
name specifies which function the policy should be limited to. A policy can either be restricted
to a single function or grant access to all functions of a module. A module can have none
or several functions. The functions are assigned to the module’s views and thus the access
requirements for a view are controlled by the functions that are assigned to that view. The
function-view assignments can not be tampered with from within the administration inter-
face. A policy granting access to a module’s function can be further restricted by the way of
function limitations. This can only be done if the function itself supports limitations. A func-
tion may support none, one or several limitations. The following table shows an overview of
the available function limitations.

Limitation Description

Class The ”Class” limitation makes it possible to
limit a policy to objects of certain types.

Language The “Language” limitation makes it possible
to limit a policy to object versions in specific
languages.

Node The "Node” limitation makes it possible to
limit a policy to a specific node.

Owner The "Owner” limitation makes it possible to

limit a policy to objects that are owned by
the user who is logged in.

Parent class The ”Parent class” limitation makes it possi-
ble to limit a policy based on the type of the
object referenced by the parent node.
Section The ”Section” limitation makes it possible to
limit a policy to objects that are assigned to
certain sections.

Siteaccess The ”Siteaccess” limitation makes it possible
to limit a policy to a certain siteaccess.
Status The ”Status” limitation makes it possible to

limit a policy to a certain version status
(published, archived, etc.).

Subtree The ”Subtree” limitation makes it possible to
limit a policy to a certain part of the content
node tree.

2.8 Access control 152

Role

A role is a named collection of policies. A role can be assigned to users and user groups. It
is possible to assign a role with additional limitations. The role limitation feature is typically
useful in a case where multiple users with similar permissions have to manipulate different
parts of the content node tree. Instead of creating a role for each user, the site administrator
can create a generic role and assign it with different limitations to the different users. The
role limitations will override the limitations of the role’s policies. The following table shows
an overview of the available role limitations.

Limitation Description

Section The ”Section” limitation makes it possible to
limit a role to objects that are assigned to
certain sections.

Subtree The ”Subtree” limitation makes it possible to
limit a role to a certain part of the content
node tree.

2.9 Webshop

153

2.9 Webshop

This section explains the e-commerce capabilities of eZ Publish. The system comes with an
integrated shop mechanism that plugs directly into the object / node tree model.

Note: From 4.3 onwards the eZ Webshop tab is disabled by default in the eZ Publish installa-
tion. Follow this link (page 2103) to see how you enable the eZ Webshop functionality in eZ

Publish.

The webshop functionality is built around the following components:

* Products

e Value Added Taxes (VATs)
* Discount rules

* Wishlist

* Basket

e Orders

The following illustration shows how the different components interconnect and work to-

gether.
(see figure 2.26)

DISCOUNT RULES

Affects
the price

Can be

pu‘y PRODUCTS
v

WISHLIST

VAT

%

Affects
the price

Can be
put into

SHOPPING BASKET

l Checkout

ORDER

Figure 2.26: The integrated e-commerce solution.

2.9 Webshop 154

An actual product is represented by a content object (with at least one node assignment)
that contains information about the product itself along with a price. The price must be
represented by an attribute that makes use of the built-in price or multi-price datatype. These
are special datatypes which plug more deeply into the system. The main difference is that the
price datatype allows to specify only one price value for each object (simple price product)
whereas the multi-price datatype makes it possible to specify several price values in different
currencies for each object (multi-price product). A content class can only contain one price
attribute or one multi-price attribute. There is no way to have a simple price product and a
multi-price one in the shopping basket at the same time and it is not recommended to use
both price and multi-price datatype on your site.

The price can be affected by a value added tax and/or a discount rule. A discount rule can be
configured to reduce the price of certain products by a percentage. The products can be put
into a user’s wishlist and/or shopping basket. A user’s wishlist and basket can be modified at
any time. The contents of the shopping basket can be purchased by initiating the checkout
process. Once the checkout process is completed, an order will be created. The system will
automatically notify the site administrator and the user who placed the order by sending out
E-mails. A list of placed orders and sales statistics can be viewed using the administration
interface. An order is assigned a status which may be changed by a user with sufficient
permissions. A status log is kept for each order.

Value added taxes

The system allows the site administrator to set up different kinds of value added taxes (VAT
types). A VAT type consists of a name and a percentage. The administration interface makes
it possible to add, remove and modify VAT types. The VAT types are used by the price and
multi-price datatype. There is an additional possibility to create VAT charging rules which
instruct the system to charge VATs according to the product category and the buyer’s country.
(Please refer to the "VAT charging system (page 358)” section of the “Features” chapter for
more information.)

The price datatype

As pointed out above, a product is nothing more than a content object with a price. The price
can be represented by an attribute that makes use of the built-in price datatype. Instances of
any class containing the price datatype will automatically be treated as simple price products.
A class attribute represented by the price datatype makes use of one of the predefined VATs.
There are two ways in which the selected VAT can be used. This configuration depends on
how the product prices are entered when the objects are created. The first alternative (Price
inc. VAT) is to be used if the prices that are entered already include the value added tax.
The second alternative (Price ex. VAT) should be used if the prices that are entered do not
contain the value added tax. When the first alternative is used and the product is viewed, the
price that was entered will be shown. When the second alternative is used and the product
is viewed, the price will be the price that was entered plus the VAT. When the object is in
the basket and the basket is viewed, it is possible to see the price of the products with and
without the VATs (regardless of which approach that was used).

Please note that the price datatype allows to set only one price value for each product (the
system will use your locale currency for when displaying this price). This datatype does not
work with multiple currencies.

2.9 Webshop 155

The multi-price datatype

The price can be represented by an attribute that makes use of the built-in multi-price
datatype. This datatype allows you to set several prices in different currencies for each prod-
uct independently of your locale currency. Instances of any class containing the multi-price
price datatype are automatically treated as multi-price products. (Please refer to the "Multi-
currency (page 398)” section of the "Features” chapter for more information.) This datatype
interacts with VATSs in the same way as the price datatype.

Discount rules

The final price of a product can be affected by a discount rule. A discount rule can be con-
figured to reduce the price of certain products by a percentage. The discount rules can be
placed in different discount rule groups and are always active (there is no way to turn them
on/off). The discount rule groups make it possible to choose which group(s) of customers will
be affected. This can be done by assigning a discount rule group to the target user group(s).

By default, a newly created discount rule affects all the products that are in the system.
However, a discount rule can be easily limited to a group of products. A discount rule can be
limited in two ways, which are mutually exclusive. The first alternative is to use a combination
of the "Product type” and the ”Section” limitations, which are described in the table below.

Limitation Description

Product type The ”"Product type” limitation makes it pos-
sible to limit a policy to products/objects of
certain types (only classes that make use of
the price datatype will be shown). The de-
fault setting is "Any”, which means that it
will affect all kinds of product objects.
Section The ”Section” limitation makes it possible to
limit a policy to products/objects that are as-
signed to certain sections. The default set-
ting is Any”, which means that the discount
rule will affect product objects in all sec-
tions.

The second alternative is to add individual products to the discount rule’s product list. When
the individual product list is used, the "Product type” and ”Section” limitations will be omitted
and thus only the products that are in the list will be affected.

Shop related datatypes

The following table shows the datatypes that plug in to the e-commerce subsystem of eZ
publish.

Datatype Description

Price (page 560) When used as an attribute in a content class,
the ”Price” datatype connects the instances
(objects) of that class to the webshop sys-
tem. As soon as an object has a price at-

2.9 Webshop

156

tribute, users can put the object in their bas-
kets and/or wishlists. This datatype allows
to set only one price value for each product
(the system will use your locale currency for
this price).

Multi-price (page 548)

When used as an attribute in a content class,
the "Multi-price” datatype also connects the
instances (objects) of that class to the web-
shop system. As soon as an object has a
multi-price attribute, users can view its price
in different currencies, put the object in their
baskets and/or wishlists. Objects without a
price or multi-price attribute can not be put
into a user’s basket and/or wishlist and thus
they are not connected to the e-commerce
subsystem. The multi-price datatype allows
you to set several prices in different curren-
cies for each product.

Option (page 557)

The ”"Option” datatype makes it possible to
create a single group of options for each con-
tent object. Each option can be assigned a
short text and an additional price. For exam-
ple, it can be used to sell T-shirts in different
colors where the price is different for some
(or all) colors.

Multi-option (page 539)

Note that this datatype should no longer
be used. It was deprecated in eZ Publish
3.10 and is replaced by the "Multi-option2”
datatype (see below).

The "Multi-option” datatype makes it possi-
ble to create multiple groups of options for
each content object. Each option can be as-
signed a short text and an additional price.
This datatype works in the same way as the
”Option” datatype. The only difference is
that instead of supporting only one group
of options, it allows the creation of multiple
groups of options for each content object.

Multi-option2 (page 541)

The "Multi-option2” datatype makes it possi-
ble to create multiple and distinctive groups
of multi-options for each content object. The
multi-options can be nested. For each op-
tion, you can specify an additional price, an
image, whether the option should be the de-
fault selection and if it should be possible to
select it (sometimes you wish to force the se-
lection of a set of options without providing
a default selection for the user; in that case,
the first option can be set to something like
“Make a choice”). In addition, this datatype

2.9 Webshop

157

makes it is possible to set up rules for al-
lowing/disallowing certain combinations of
options.

Range-option (page 563)

The "Range-option” datatype makes it pos-
sible to create a single group of enumerated
options for each content object. For exam-
ple, it can be used in a scenario where the
goal is to sell shoes of different sizes and the
size does not affect the price. For each con-
tent object, the administrator needs to set up
the available range (if any).

2.10 Workflows 158

2.10 Workflows

This section explains the workflow capabilities of eZ Publish. The system comes with an inte-
grated workflow mechanism that makes it possible to perform different tasks with or without
user interaction. The workflow implementation is based on the following components:

* Events
* Workflows
* Workflow groups

» Triggers

The following illustration shows the relations between the elements in the list above.

(see figure 2.27)

'\Starts)

=

Consists of }

Figure 2.27: The workflow system.

An event is the smallest entity of the workflow system, it carries out a specific task. eZ Publish
comes with a collection of events that cover the needs of typical everyday tasks. For example,
the built-in approve event makes it possible to have the contents of an object approved by an
editor (a user) before it is published. The built-in events are documented in the "Workflow
events” (page 1091) section of the "Reference” chapter. It is possible to extend the system by
creating custom events for special needs. Custom workflow events have to be programmed
in PHP.

A workflow is a collection of events. In other words, it defines an ordered sequence of actions
that will be executed when the workflow is running. The workflows can be placed in differ-
ent groups. A workflow group is nothing more than a collection of workflows. A workflow is
initiated by a trigger. Although a trigger is only capable of initiating a single workflow, sev-
eral other workflows can be started through the built-in multiplexer event (from within the
workflow that was originally initiated by the trigger). A trigger is associated with a function
of a module. It will start the specified workflow either before or after that the function has
completed. The following table gives an overview of the standard/built-in triggers.

2.10 Workflows

159

ID Module Function Connection type
1 content publish before

2 content publish after

3 shop confirmorder before

4 shop checkout before

5 shop checkout after

Chapter 3

Templates

This part of the 4.x documentation is for eZ Publish 4.0, only reference section (page 491) is
common for all eZ Publish 4.x versions as well as eZ Publish 5.x "LegacyStack”, please select
the version you are using for the most up to date documentation!

The purpose of this chapter is to reveal and teach everything there is to know about the
template system. It describes both the template language and the way the system handles
the template files. People previously unfamiliar with eZ Publish templates should be able to
collect enough information in order to understand the following issues:

* What a template is and what it is not

* Template types (page layout, node and system templates)

* Template structure

* The template language

* The main template (the page layout)

* Template variables available in the page layout

* How basic template tasks can be done

* How information can be retrieved from the Content Management System

* The template override system

160

http://doc.ez.no/eZ-Publish/Technical-manual

3.1 Template basics 161

3.1 Template basics

This section explains the concepts behind templates and the template system. eZ Publish
uses templates as the fundamental unit of site design. A template is basically a custom HTML
file that describes how some particular type of content should be visualized. A template
file always ends with a ”.tpl” extension. Actual HTML code in the built-in/default templates
follow the XHTML 1.0 Transitional specification. In addition to standard HTML syntax, a
template consists of eZ Publish specific code. The eZ publish specific code makes it possible
to extract information from the system and to solve common programmatic issues like for
example conditional branching, looping, etc. All eZ Publish specific code must be placed
inside a set of curly brackets, ”’{” and ”}”. The following example shows a part of a template
that prints out the current time:

<h1>Time machine</hi1>
<p>

The current time is: {currentdate() |110n(time)}
</p>

The example above demonstrates how standard HTML is mixed with eZ Publish specific code.
It shows the usage of the "currentdate” (page 1124) and the ”"110n” (page 1145) template
operators. Since "currentdate” returns a UNIX timestamp, it must be formatted using the
”110n” localization operator (or else the output would not make any sense to humans). This
is done by piping the output from the “currentdate” operator into the ”110n” operator, which
will output the requested information according to the current locale settings. The ”time”
parameter tells the operator to output only the time (it could have been “date”, “shortdate”,
”datetime” and so on).

Template generation

The template system is component based. In other words, an actual HTML page is usually
made up of several templates. At the minimum, eZ Publish always renders the main template,
which is called pagelayout. The page layout contains the HTML, HEAD and BODY tags; it
dictates the overall look of a site. Among other things, it describes the visual structure (main
layout, logo, main menu, footer, etc.) that will be presented for each HTML page that the
system generates.

Every incoming request tells eZ Publish to run a specific module and to execute one of the
module’s views. When finished, the requested module/view combination will generate a
result. The result can be accessed through the $module result array which is available in the
pagelayout template. The following illustration shows a simplified 3-step explanation of how
eZ Publish responds to an HTTP request.

(see figure 3.1)

Every view generates a chunk of HTML code by making use of a template. Templates that
are used by views are often referred to as view templates. Whenever a view has finished
running, it will issue an internal template request. The requested template will be interpreted,
processed and thus converted to HTML. After processing, the system will put the resulting
HTML in the module’s result array. The module/view’s result can be accessed through the

http://www.w3.org/TR/xhtml1/dtds.html#a_dtd_XHTML-1.0-Transitional

3.1 Template basics 162

CLIENT HTTP request WEB SERVER
> d]
| http: |/ fwww.example.com/content search @ P'OCQSSiﬂg
Weh index.php
browser ¥
Module
— *
HTTP k {
reply
T P Result

Resulting HTML = Pagelayout + View template

Figure 3.1: Client - server cycle.

”.content” extension: {$module result.content}. By printing out the contents of this variable,
it is possible to include the HTML code that was generated by the view in the pagelayout. The
following illustration shows how the module/view result (generated by different modules/
views - depending on the request) is included in the pagelayout:

(see figure 3.2)

s MODULE
------ Sy L RESULT

PAGELAYOUT

Figure 3.2: The module result as a part of the pagelayout.

View templates

A template used by a view can either be a node template or a system template. A node template
will only be used when a node is being viewed, for example when a system URL containing "/
content/view” or the virtual URL of a node is requested. A system template typically provides
an HTML interface to a specific eZ Publish feature. For example, the template used by the
"search” view of the ”"content” module provides an interface to the built-in search engine.

The difference between the template types mentioned above is the available variables and
the combination of override rules that can be used. A node template (page 164) gives access
to a variable ($node) which contains information about the actual node that is being viewed.
Depending on the view that was called, a system template (page 166) typically gives access
to several variables. A template override rule makes it possible to display custom templates in
specific cases. The override rules for node templates are much more flexible than the override
rules for system templates. For example, it is possible to set up complex rule combinations that

3.1 Template basics 163

depend on the type of the node being viewed, the depth of the node in the tree, the section
which the node’s object is assigned to and so on. Please refer to the "The template override
system” (page 215) section for a detailed description of the template override mechanism.

3.1.1 Template basics / Node templates 164

3.1.1 Node templates

Whenever eZ Publish is requested to output information about a node (either by a system URL
or a virtual URL), it executes the "view” (page 790) view of the "content” (page 655) module.
If a system URL is used, both the desired view mode and the target node must be specified in
the URL. If a virtual URL is used, eZ Publish will automatically know which node that should
be accessed by looking up the corresponding system URL in the internal URL table. When a
virtual URL is used, the system will always use the full view mode.

The templates for the different view modes must be placed inside the ”/templates/node/
view/” directory of a design. If the requested file is not found within the main design of the
siteaccess, the system will search for it in the additional designs and the standard design.
Please refer to the documentation of the automatic fallback system for more information
about this feature. The ”/templates/node/view” directory of the standard design contains
templates for different view modes. A basic custom design typically contains a page layout
and a full view template. The following illustration shows the locations of these templates in
a custom design called "example”.

(see figure 3.3)

=] eZ publish
=11 design
=] example
=-] templates
pagelayout.tpl
=1 node
= [:I e

Figure 3.3: Location of pagelayout and full view template in example design.

When a node is requested (and there are no template override rules for node templates), eZ
Publish will generate a page that is built up of the following templates:

(see figure 3.4)

design/example /templates/ pagelayout.tpl

{Smodule result.content}

design/example/templates/node/view/full.tpl

Figure 3.4: Pagelayout + node view full template.

3.1.1 Template basics / Node templates 165

Custom node templates

A typical eZ Publish site always makes use of custom node templates. The main reason for
this is because there is almost always a need for displaying the various types of nodes in
different ways. For example, information pages need to look different than news articles;
the welcome page has to be formatted in a special way, and so on. Unlike custom system
templates (which are mostly just modified copies of the standard templates placed in a custom
design), custom node templates are created as override templates. The override templates are
triggered by the template override system. This system offers a flexible mechanism that can
be programmed to use different templates based on various conditions. For example, it can be
programmed to use a template called "article.tpl” when the system is requested to show the
contents of nodes referencing article objects and at the same time show ”special article.tpl”
when a specific article is accessed. Note that override templates (in this case article.tpl” and
“special article.tpl”) must be placed in the ”override/templates” directory of the main design
used by the siteaccess. Please refer to the documentation of the template override system
(page 215) for more information about how this mechanism actually works and how it can
be used to trigger override templates.

The $node variable

Whenever the system makes use of a node template (regardless of the view mode, the target
node and if the template is an override or not), a variable called $node will be available in
the template that is used. This variable is automatically set by the system and it contains an
ezcontentobjecttreenode (page 1018) object that represents the requested node. This variable
allows the extraction and display of various information about the node and the object that it
encapsulates. Please refer to "Outputting node and object data” (page 212) for information
about how to display node/object data.

3.1.2 Template basics / System templates 166

3.1.2 System templates

Whenever eZ Publish is requested to do something else than displaying a node (in other
words the URL does not contain ”/content/view” or isn’t the virtual URL of a node), it will
use a system template. There are two main differences between system templates and node
templates:

* System templates provide access to various variables (depending on the view that was
requested). A node template only provides access to a $node variable representing the
node that was requested.

* The override rules for node templates are much more flexible than the override rules
for system templates.

An eZ Publish distribution provides default templates for all views. These templates are
located in the "templates” directory of the standard design. A view typically uses a template
that is located in a subdirectory that has the same name as the module which the view belongs
to. The name of the template is usually the same as the name of the view (with a ”.tpl”
extension). For example, the "login” view of the "user” module is looks for a template called
"login.tpl” inside a directory called "user”. Another example would be the "basket” view of the
”shop” module. This view looks for a template called "basket.tpl” within the "shop” directory.

Custom system templates

Although eZ Publish provides all the necessary system templates (by the way of the standard
design), a typical eZ Publish site always makes use of customized system templates. The
main reason for this is because the default templates usually need to be tailored in order to
fit perfectly in with the style of a custom design. Unlike custom node templates which are
mostly provided using the template override system, custom system templates are usually
just modified copies of the standard templates located in the custom design. These are not
connected with the override system and must be placed in the "templates” directory of a
custom design (not in the "override/templates” directory). For example, a custom template
for the "login” view of the "user” module in a design called "example” would be ”/design/
example/templates/user/login.tpl”. A custom template for the “search” view of the "content”
module would be ”/design/example/templates/content/search.tpl”.

Design combinations

As mentioned in the text above, a custom design typically contains a set of customized system
templates. However, creating a custom design that provides templates for all possible scenar-
ios would be too much / unnecessary work. This is why the standard design always should be
used as the last fallback resort. The automatic fallback system makes it possible to combine
several designs so that the main design (which is usually a custom design) does not have to
provide all the necessary templates. Whenever eZ Publish is unable to find a template within
the main design of the siteaccess, the system will look for it in the additional designs and the
standard design.

3.1.2 Template basics / System templates 167

Commonly used system templates

The following table shows some of the most commonly used system templates.

Request URL Module View Template
Search /content/ content search /templates/
interface search content/
search.tpl
Shopping bas- | /shop/basket shop basket /templates/
ket shop/
basket.tpl
Login page /user/login user login /templates/
user/login.tpl
User registra- | /user/register user register /templates/
tion user/
register.tpl

3.2 The pagelayout 168

3.2 The pagelayout

The pagelayout is the main template. Among other things, it dictates the overall look of a site.
The filename of the pagelayout template must be ”pagelayout.tpl”. It has to be placed inside
the "templates” directory of a design. If eZ Publish is unable to find a pagelayout within the
current design (specified by the siteaccess), it will attempt to use the pagelayout template
that is provided by one of the fallback designs. The following illustration shows the location
of the pagelayout template located in a design called "example”.

(see figure 3.5)

=1-_ eZ publish
=1 design
=] example
=-{_] templates
pagelayout,kpl

Figure 3.5: The location of the pagelayout (main) template.

The pagelayout contains the HTML, HEAD and BODY tags (the other HTML framework). In
addition, it dictates the overall look of a site. Among other things, it is used to describe
the visual structure (main layout, logo, main menu, footer, etc.) that will be presented for
every page request. The following example shows what is considered to be the most basic
pagelayout:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<style type="text/css">
@import url({’stylesheets/core.css’|ezdesign});
@import url({’stylesheets/debug.css’|ezdesign});
</style>
{include uri=’design:page_head.tpl’}
</head>

<body>

{$module_result.content}

</body>
</html>

3.2 The pagelayout 169

The document type

The very first line in the pagelayout is used to declare the document type of the pages that are
generated by eZ Publish. Per HTML and XHTML standards, a DOCTYPE (short for "document
type declaration”) informs browsers and syntax validation engines about which version of
(X)HTML that is used. This information should be included at the very top of in every web
page, this is why it is the first part of the pagelayout.

The DOCTYPE declaration is one of the key components when it comes to proper rendering
and compliant web pages. A DOCTYPE that includes a full URL tells the browser to render
the page in standards-compliant mode, treating the (X)HTML, CSS, and DOM structures as
they should be treated according to the standards. A missing, incomplete or outdated DOC-
TYPE throws most browsers into something called ”Quirks” mode. In this mode, the browser
assumes that the document was written using old-fashioned, invalid markup and code per
the chaotic industry norms of the late 1990s. In other words, the page will most likely not be
rendered according to the standards and it will certainly not validate.

The HTML tag

The HTML tags encapsulate the marked up contents of an actual web page. In addition to
the tag itself, the HTML tag in the example above includes a URL to the XHTML specification.
XHTML is a family of current and future document types and modules that reproduce, subset,
and extend HTML 4. The XHTML family document types are XML based, which means that
they are designed to work in conjunction with XML-based user agents.

In document processing, it is often useful to identify the natural or formal language in which
the content is written. The "lang” and “xml:lang” attributes specify the language of the entire
HTML element. The value of the xml:lang attribute takes precedence. The language values
should be set to the language that is used throughout the site. The values of the attributes are
language identifiers as defined by ISO 3166-1 (and the corresponding ISO 3166-1-alpha-2)
standards.

The head tag

The head tag contains information about the document itself. The information contained here
doesn’t show up on the page displayed in a web browser. Only the contents of the title tag
will be made visible (as the title of the browser window). The head tag typically contains
information about which CSS files that should be used, a description of the document itself,
keywords and so on.

Cascading Style Sheets

The page layout in the example above makes use of two CSS files: ”core.css” and "debug.css”.
The code encapsulated by curly brackets is eZ Publish specific code. What happens here is that
the text within the quotes is piped into a template operator called “ezdesign” (page 1295).
The operator prepends the text with the path to the current design directory (the one which
is specified using the ”SiteDesign” configuration directive). This technique assures that the
path to the CSS files are always correct, regardless of the access method (page 135) that is

3.2 The pagelayout 170

being used. For example, if the name of the current design is "my design” and it includes a
CSS file called "example.css”, the following output will be produced:

@import url("/design/my_design/stylesheets/example.css");

The ”core.css” and ”debug.css” files are a part of the standard design that comes with eZ
Publish. It is not necessary to have these CSS files in the ”stylesheets” directory of a custom
design. If eZ Publish is unable to find the files within the current/custom design, it will
automatically use the ones that are in the standard design. Please refer to the description of
the automatic fallback system for a detailed description of the fallback mechanism. Because
of the fallback system, the style-part of the page layout presented above will most likely result
in the following output:

<style type="text/css">
@import url("/design/standard/stylesheets/core.css");
@import url("/design/standard/stylesheets/debug.css");
</style>

The core stylesheet

The "core.css” file defines a standard set of basic styles (font styles, sizes, margins, etc.) for
both general HTML elements and some eZ Publish specific classes. The eZ publish specific
classes are used by the standard templates. A site that makes an extensive use of the default
templates should always have the ”core.css” file included in the page layout. Otherwise, the
missing styles may cause the unexpected rendering of various elements.

The standard ”core.css” file should never be changed. If there are basic styles in core.css that
doesn’t fit the visual environment of a site, a modified version of ”core.css” may be placed
in the custom design that the site uses. However, the recommended solution is to create a
completely new CSS file that contains both custom classes and overrides for elements defined
in ”core.css”.

The debug stylesheet

The "debug.css” file contains styles that are used to format the debug output which appears
at the bottom of the page when debug output is enabled. The usage of the "debug.css” file
is only necessary during the development of the site (typically when debug information is
needed) and thus it can be removed or commented out before the site is launched.

Document information

The system is capable of automatically generating information about the page itself (title,
meta tags, keywords, etc.). This can be done by the inclusion of the page head (page 172)
template ("page_head.tpl”), which is located in the templates directory of the standard design.
If eZ Publish is unable to find the requested file in current/custom design, it will automatically
fallback and use the file located in the standard design.

3.2 The pagelayout 171

The body tag

The body tag defines the document’s body, which contains the actual contents of the web
page (text, images, etc.) marked up in an orderly fashion. At the minimum, an eZ Publish
pagelayout should contain the result from the requested modules.

Module result

Upon every request, eZ Publish automatically generates an array called "module result”. This
array is available only in the pagelayout template. It contains all the necessary information
about which module that was run, which view that was called, the output that was produced
and so on. The actual output (for example the contents of a news article) can be included in
the page layout by accessing the "content” element of the $module result array, the syntax is:

{$module_result.content}

When the page layout is rendered, the {$module result.content} part will be replaced with
the actual output that the requested module produced. Please refer to the "Variables in
pagelayout” (page 176) page for an overview of the template variables that can be accessed
from within the pag elayout.

Debug information

The last part of a typical eZ Publish pagelayout is an HTML comment that looks like this:

<!--DEBUG_REPORT-->

If the debug information is turned on, eZ Publish will replace this comment with the actual
debug report when the pagelayout is processed. In other words, the debug report will be
included as a part of the generated page and thus it will not cause invalid output by breaking
the HTML structure. The debug reports that eZ Publish generates follow the XHTML 1.0
Transitional specification and thus the debug information validates.

3

3.2.1 The pagelayout / The page head 172

3.2.1 The page head

The standard design contains a page head template that can be used to automatically gen-
erate important tags that should be included in the head section of every HTML response.
The output of the standard head template (/design/standard/template/page_head.tpl) can
be broken down into the following group of tags:

* Title tag
* Meta tags

* Link tags

The following HTML dump shows an example of the output from the standard page head
template.

<title>Current / Parent / Top - Site name</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<meta http-equiv="Content-language" content="eng-GB" />

<meta name="author" content="eZ Systems" />

<meta name="copyright" content="eZ Systems" />

<meta name="description" content="Content Management System" />

<meta name='"keywords" content="cms, publish, e-commerce, content management,
development framework" /

>

<meta name="MSSmartTagsPreventParsing" content="TRUE" />

<meta name="generator" content="eZ publish" />

<link rel="Home" href="/" title="Front page" />

<link rel="Index" href="/" />

<link rel="Top" href="/" title="Current / Parent / Top - Site name" />

<link rel="Search" href="/content/advancedsearch" title="Search Site name" />
<link rel="Shortcut icon" href="/design/standard/images/

favicon.ico" type="image/x-icon" />

<link rel="Copyright" href="/ezinfo/copyright" />

<link rel="Author" href="/ezinfo/about" />

<link rel="Alternate" href="/layout/set/print/content/view/full/

64" media="print" title="Printable version" />

Title

The contents of the title tag is based on the location being viewed (the location within either
the content node tree or the system itself) and the actual name of the site. The path to the
element being viewed is reversed and thus the current element becomes the first component
of the title. The components of the path are separated by slashes. When a node is viewed, the
path elements will be the actual names of the objects which are encapsulated by the nodes
that make up the path up to and including the target node. When a system function is being
accessed (for example the log-in view of the user module: ”/user/login”), the path will most

3.2.1 The pagelayout / The page head 173

likely be a reversed version of the module/view combination that was used. The name of the
site is appended at the end of the path, separated by a dash. The site name can be configured
using the ”SiteName” directive in a configuration override for ”site.ini”.

The example above demonstrates the output of the page head template when a node is being
viewed. The name of the object encapsulating the node is "Current”. The name of the other
objects (encapsulated by the parent node and so on) are “Parent” and "Top”. The name of the
site is ”Site name”.

Meta tags

In addition to the actual information contained on a web page, the HTML of the page may also
include information about the document itself. This is achieved by making use of so called
meta tags. The information given by meta tags is usually not visible when the web page
is viewed. However, the meta tags are used by the web browser and miscellaneous search
engines that index and rank the contents of web pages. The standard page head template
outputs the most commonly used meta tags. It can be broken down into three types of tags:

* HTTP-EQUIV meta tags
* Generic meta tags

* Additional meta tags

HTTP-EQUIV meta tags

Meta tags with an HTTP-EQUIV attribute are equivalent to HTTP headers. These tags usually
control the way a browser interprets the document. Tags using this form should have an
equivalent effect when specified as an HTTP header. Some web servers automatically trans-
late the contents of these tags to actual HTTP headers. The HTTP-EQUIV meta tags in the
page head make sure that the browser (and also search engines) know which character set
and language the document uses. The language and character set values are automatically
set by eZ publish based on the language and character set that the site uses.

Generic meta tags

The generic meta tags make it possible to reveal meta information about the document itself.
Although the specification of meta tags does not define a set of legal meta data properties, it is
a common practice to include generic information such as the name of the author, description
of the site, copyright notices, keywords, etc. By making use of the "MetaDataArray][...]”
directive in a configuration override for ”site.ini”, the site administrator can set up a custom
set of generic meta tags. eZ Publish will loop through and display the name and value of the
specified tags. The example above shows the default meta tags that will be used if no custom
meta tag configuration is present.

Additional meta tags

The last meta tags set by the standard page head template prevent the usage of smart tags
and reveal the name of the software that was used to generate the output.

3.2.1 The pagelayout / The page head 174

Link tags

Link tags in the HTML head make it possible to relate the document to other documents.
This is done by the way of REL and REV attributes. While REL links are used to establish
relationships, REV links are used to establish reverse relationships. Some browsers make use
of the link tags in order to produce a navigation bar that can be used to quickly navigate
the site. The links tags generated by eZ Publish are specified in the ”link.tpl” file within
the templates directory of the standard design. The standard page head makes use of the
"links.tpl” file. The default output of the standard page head template produces a basic set of
links that can be used to navigate to different parts of the site. The following list shows the
link tags that the page head generates:

Link Description

Home The "Home” link points to the root/start
of the site. It will always bring the user
back to the front page (for example http:/
/www.example.com).

Index The ”Index” link points to the root/start
of the site. It will always bring the user
back to the front page (for example http:/
/www.example.com).

Top The "Top” link points to the root/start of
the site. It will always bring the user
back to the front page (for example http:/
/www.example.com).

Search The ”Search” link points to the ”advanced
search” view of the “content” module. It will
bring the user to the advanced search in-
terface (http://www.example.com/content/
advancedsearch).

Shortcut icon The ”Shortcut icon” defines the location of
the favorite/shortcut icon. Most browsers
will display this icon in front of URLs in the
address field and in the bookmark list. The
default shortcut icon is the double square
white-orange eZ Systems logo. It can be eas-
ily replaced by putting a 16x16 pixel icon
file (16 color BMP/Windows Icon Format)
called "favicon.ico” in the images folder of
a site design.

Copyright The ”Copyright” link points to the "copy-
right” view of the ”ezinfo” module. The
default copyright page of eZ publish will
be displayed (http://www.example.com/
ezinfo/copyright.).

Author The ”Author” link points to the "about” view
of the ”ezinfo” module. The default about
page of eZ publish will be displayed (http:/
/www.example.com/ezinfo/about).
Alternate The ”Alternate” link points to a alternate/

3.2.1 The pagelayout / The page head 175

printerfriendly version of the page. The
printerfriendly version of a page is achieved
by making use of the "set” view of the "lay-
out” module. This technique makes it possi-
ble to use an alternative pagelayout which is
usually stripped for everything (menus, lo-
gos, etc.) except the actual content that is
being presented.

Link parameters

The links can be completely turned off by passing “enable_link=false()” when including the
page head template:

{include uri=’design:page_head.tpl’ enable_link=false()}

The link to the alternate/print layout can be turned off by passing “enable_print=false()”
when including the page head template:

{include uri=’design:page_head.tpl’ enable_print=false()}

3.2.2 The pagelayout / Variables in pagelayout 176

3.2.2 Variables in pagelayout

The pagelayout template contains miscellaneous variables that can be used to display infor-
mation about the state of the system and/or to control the output. The following table shows
the available variables along with a brief description.

Variable Type Description

$access_type array The name of the siteac-
cess (as "name”) and the ID
number (as "type”) of the
access method (page 135)
that was used (1=URL,
2=Host, 3=Port).
$anonymous_user id integer The ID number of the con-
tent object that represents
the anonymous user ac-
count (the default/standard
value is 10).

$current user object The ezuser (page 1082) ob-
ject of the user who is cur-
rently logged in. If no user
is logged in, the anonymous
user account will be used.
$ezinfo array An array of three
strings: ”version”, "version_
alias” and "revision”. These
strings reveal basic informa-
tion about the eZ publish re-
lease that is being used.
$module result array Contains information about
the result (and the result it-
self) generated by the mod-
ule/view that was executed.
$navigation _part array A hash containing the name
and the identifier (the keys
are "name” and ”identifier”)
of the current navigation
part; for example: "Content
structure” and ”ezcontent-
navigationpart”. The navi-
gation part is used by the
administration interface to
determine which part the
user interacts with.
$requested _uri string string Contains the site specific
part of the requested URL,
for example: ”content/
view/full/44” (system URL)
or ”company/about” (vir-

3.2.2 The pagelayout / Variables in pagelayout 177

tual URL).

$site array Contains miscellaneous in-
formation about the siteac-
cess that is being used
(site name, design resource,
meta tags, etc.)
$ui_component string The user interface compo-
nent which eZ publish uses
while the current page is be-
ing shown. This variable is
used by the administration
interface.

$ui context string The user interface context
in which eZ publish is in
while the current page is
being shown. This vari-
able is used by the admin-
istration interface to dis-
tinguish between different
modes (for example “nav-
igation”, ”edit”, “browse”,
etc.).

$uri string string The system version of the
requested URL (for example
”/content/view/full/13”).
$warning list array An array of warnings re-
lated to problems that were
discovered when the page
was rendered.

$module result

The $module result array contains the result that was generated by the module/view which
was executed. If eZ Publish was instructed to display the contents of a node, the variable
will contain additional information about the node that was requested. If eZ Publish was
instructed to do something else (practically anything that is not an actual node view), the
result will not contain additional information. The following tables show the contents of the
$module result variable in the different scenarios.

The default $module result

Element Type Description

content string The actual content (result
of templates) that was gen-
erated by the requested
view.

path array An array of hashes contain-
ing information about the

3.2.2 The pagelayout / Variables in pagelayout 178

path which leads to the
page that is currently being
viewed. Each hash contains
the following keys: "text”,
“url”. The "text” element
usually contains the name
of the module/view (for ex-
ample ”Collected informa-
tion”). The "url” element
contains the address. The
“url” key of the last element
in the array is usually set to
false.

The standard page head
(page 172) template uses
the path array to build the
TITLE component of the
HEAD section. In addition,
the path array can for exam-
ple be used to build bread-
crumbs (a path with names
(as hyperlinks) of pages/
views that lead to the cur-
rent page/view).

is_default navigation_part boolean Returns TRUE if the de-
fault navigation part is be-
ing used (the one which is
set in PHP code). Returns
FALSE if the navigation part
of the current module/view
has been reconfigured by
the site administrator. This
can be done by making
use of the ”"NavigationPart”
directive of the ”[Module-
Settings]” section within a
configuration override for
“module.ini”.

navigation_part string The identifier of the cur-
rent navigation part (for
example “ezcontentnaviga-
tionpart”). This variable
is used by the administra-
tion interface to determine
which part the user inter-
acts with.

ui_context string The user interface context
in which eZ publish is in
while the current page is be-
ing shown. This variable

3.2.2 The pagelayout / Variables in pagelayout 179

is used by the administra-
tion interface to distinguish
between different modes
(navigation, edit, browse,
etc.)

ui_component string The user interface compo-
nent which eZ publish uses
while the current page is be-
ing shown. This variable is
used by the administration
interface.

uri string Contains the site specific
part of the requested URL,
for example: ”content/
view/full/44” (system URL)
or “company/about” (vir-

tual URL).
The $module result when a node is being viewed
Element Type Description
content string The actual content (result

of templates) that was gen-
erated by the requested
view.

view _parameters array An array of the parameters
that were sent to the view
(for example ”limit”, "off-
set”, etc.).

path array An array of hashes contain-
ing information about the
path of nodes which lead to
the node that is currently
being viewed. Each hash
contains the following com-
ponents:

Key: text

Description: The name of
the object referenced by the
node.

Key: url

Description: The system
URL of the node (for ex-
ample ”/content/view/full/
447).

Key: url alias
Description: The virtual

3.2.2 The pagelayout / Variables in pagelayout 180

URL of the node (for exam-
ple "company/about us”).

Key: node_id
Description: The ID num-
ber of the node.

The node being viewed will
have its "url” and "url alias”
components set to false. In
addition, the "node id” will
not be available. The path
array can for example be
used to build breadcrumbs
(a path with names (as hy-
perlinks) of the objects ref-
erenced by the nodes that
lead to the target/current
node).

title_path array Almost the same as the
“path” array (see above).
When a node is being
viewed, the standard page
head (page 172) template
uses the "title_path” array to
build the TITLE component
of the HEAD section.
section id string The ID number of the sec-
tion which the object ref-
erenced by the node being
viewed belongs to.

node id string The ID number of the node
that is being viewed.
navigation_part string Contains the name identi-

fier of the current naviga-
tion part (for example "ez-
content-

navigationpart”). This vari-
able is used by the admin-
istration interface to deter-
mine which part the user in-
teracts with.

content info array Contains miscellaneous in-
formation about the node
that is being viewed:
Variable: node id

Type: string

Description: The ID num-
ber of the node.

3.2.2 The pagelayout / Variables in pagelayout

181

Variable: parent node_id
Type: string

Description: The ID num-
ber of the parent node.

Variable: object id

Type: string

Description: The ID num-
ber of the object referenced
by the node.

Variable: class id

Type: string

Description: The ID num-
ber of the class which the
object is an instance of.

Variable: class identifier
Type: string

Description: The identifier
of the class which the object
is an instance of (for exam-
ple “forum_message”).

Variable: offset

Type: integer

Description: The offset
view parameter.

Variable: viewmode

Type: string

Description: ~ The view
mode that was used to dis-
play the node (for example
”full”, ”line”, etc.).

Variable: node depth
Type: string

Description: The depth of
the node in the content tree.

Variable: url alias

Type: string

Description: The virtual
URL of the node (for exam-
ple "company/about us”).

Variable: persistent_
variable

Type: n/a

3.2.2 The pagelayout / Variables in pagelayout 182

Description: A variable set
in one of the templates used
by the view that was ex-
ecuted. Regardless of the
caching mechanisms used,
this variable will be avail-
able in the pagelayout. The
type of the persistent vari-
able depends on the value it
contains. If the variable is
not set, it will simply return
a boolean FALSE.

Variable: class_group
Type: array

Description: The ID num-
bers of the class groups that
the class (which the object
being viewed is an instance
of) belongs to. This vari-
able is connected with a fea-
ture that makes it possible
to create template overrides
based on class groups.

By default the "class_group”
always returns a boolean
FALSE value because the
class group override feature
is

turned off. It can be turned
on by setting the ”Enable-
ClassGroupOverride” direc-
tive in the [ContentOver-
rideSettings] block of a con-
figuration override for "con-
tent.ini” to “true”.

cache ttl integer The TTL (Time To Live)
value of the result that was
generated by the module’s
view (as seconds). A TTL
of minus one means that the
view cache should never ex-
pire. A TTL of zero means
that the result should never
be cached.

is_default navigation_part boolean Returns TRUE if the de-
fault navigation part is be-
ing used (the one which is
set in PHP code). Returns

3.2.2 The pagelayout / Variables in pagelayout 183

FALSE if the navigation part
of the current module/view
has been reconfigured by
the site administrator. This
can be done by making
use of the "NavigationPart”
directive of the ”[Module-
Settings]” section within a
configuration override for
“module.ini”.

ui_context string The user interface context
in which eZ publish is in
while the current page is be-
ing shown. This variable
is used by the administra-
tion interface to distinguish
between different modes
(navigation, edit, browse,
etc.)

ui_component string The user interface compo-
nent used by eZ publish
while the current page is be-
ing shown. This variable is
used by the administration
interface.

uri string The site specific part of the
requested URL, for exam-
ple: “content/view/full/44”
(system URL) or "company/
about” (virtual URL).

3.3 The template language 184

3.3 The template language

The eZ Publish template language makes it possible to extract information from the system
and to solve common programmatic issues like for example conditional branching, looping,
etc. All eZ Publish specific code must be placed inside a set of curly brackets, ”{” and ”}”.
A template file is a combination of HTML and eZ Publish template code. Everything that is
encapsulated by curly brackets will be interpreted by the template parser when the template
is processed. Everything outside the curly brackets will be ignored and thus it will be sent to
the browser without any changes.

Curly bracket issues

Since curly brackets are reserved for defining blocks of eZ Publish template code, these char-
acters can not be used directly in a template. For example, JavaScript code can not be inserted
directly into a template file because it makes an extensive use of curly brackets. All non tem-
plate specific code/text that uses curly brackets must be put inside a literal” section. The
contents of a literal section will be ignored by the template parser. The following example
demonstrates the usage of the literal tags:

{literal}

<script language="JavaScript" type="text/javascript">
<1--
window.onload=function()
{
document .getElementById(’sectionName’).select();
document .getElementById(’sectionName’).focus();
}
-=>
</script>
{/literal}

Outputting curly brackets
It is possible to output curly brackets using two template functions called "Idelim” (page

1346) and "rdelim” (page 1348) (short for left delimiter and right delimiter). The following
example demonstrates the usage of these functions:

This is the left curly bracket: {ldelim}

This is the right curly bracket: {rdelim}

The following output will be produced:

This is the left curly bracket: {
This is the right curly bracket: }

3.3.1 The template language / Comments 185

3.3.1 Comments

Just like in almost any programming language, comments can be used to add explanations,
descriptions, etc. Template comments are ignored by the parser and will not be displayed in
the resulting HTML output.

There is only one way to add template comments, and that is by encapsulating a block of code
by a matching pair of the ”{*” and ”*}” sequence of characters (left curly bracket + asterisk
and asterisk + right curly bracket). In other words, a template comment is just like any other
template code except that the curly brackets are accompanied by adjacent asterisks. It is
possible to comment both single and multiple lines of code. However, nesting of comments
is not supported (it is not possible to comment a chunk of code that already is a comment).
The following examples demonstrate the use of comments.

Single line comment

{* This is a single line comment. *}

The example above will not produce any output.

Multi-line comment
{* This is a long comment that

spans across several lines
within the template file. *}

The example above will not produce any output.

Nested comments (illegal)

{* {* Nested comments are not supported! *}
This text will be displayed. *}

The example above will produce the following output:

This text will be displayed.

3.3.2 The template language / Variable types 186

3.3.2 \Variable types

The eZ Publish template language supports the following variable types:

* Numbers
e Strings
* Booleans
* Arrays

* Objects

While some variable types can be created on the fly, others need to be created using an
operator. Types that may be created directly are numbers and strings. Booleans and arrays
must be created using operators, objects may be created using miscellaneous functions and
operators. In addition to the types listed above, it is also possible to create and use custom
variables. Custom variable types must be represented as objects.

Numbers

Numbers are numerical values. A number can be a positive or a negative integer or a floating
point value. The following example demonstrates how different numbers can be used directly
within template code:

{13}
{1986}
{3.1415}
{102.5}
{-1024}
{-273.16}

Strings
A string is an arbitrary sequence of characters (text) that is encapsulated by a matching pair
of either single or double quotes, ’ or ”. If the quotes are omitted, the string will most likely

be interpreted as a function name. Strings are usually defined in the following way:

{’This is a string.’}
{"This is another string."}

The output of the example above would be:

This is a string.
This is another a string.

3.3.2 The template language / Variable types 187

Using quotes

It is possible to use quotes inside strings. This can be done by either using a different kind
of quote or by making use of the escape character (backslash). The following examples
demonstrate the use of quotes inside strings:

{’The following text is double quoted: "Rock and roll!" °}

{"The following text is single quoted: ’Rock and roll!’ "}
{’Using both single and double quotes: "Rock\’n roll!" >}
{’Using both single and double quotes: \’Rock\’n roll!\’ °}
{"Using both single and double quotes: ’Rock’n roll!’ "}
{"Using both single and double quotes: \"Rock’n roll\" "}

The output of the example above will be:

The following text is double quoted: "Rock and roll!”
The following text is single quoted: 'Rock and rollV’
Using both single and double quotes: "Rock’n roll!”
Using both single and double quotes: 'Rock’n roll!’
Using both single and double quotes: 'Rock’n roll’
Using both single and double quotes: "Rock’n roll!”

Because of the way template code is defined (encapsulated in a matching pair of curly brack-
ets), the right curly bracket, ”}”, must also be prepended by the backslash escape character.
The following example demonstrates this.

{’{ This text is inside curly brackets.\}’}

The output of the template code above will be:

{This text is inside curly brackets.}

Template strings do not support inline expansion of variables (as in Perl and PHP). In other
words, it is not possible to mix variables into strings. However, the concat (page 1256)
operator can be used to append the contents of some variable to a string; which means that
this operator can be used to build strings consisting of other strings and/or miscellaneous
variables.

Booleans

Booleans are binary, they are either TRUE (1) or FALSE (0). A boolean must be created using
either the "true” (page 1187) or the "false” (page 1170) template operator. Example:

{true ()}
{false()}

For some operators and functions, it is possible to use integers as booleans. However, these
are not "real” booleans. Zero means FALSE; all non-zero values mean TRUE. Some operators
are able to treat an array as if it were a boolean value. While an empty array means FALSE, a
non-empty array means TRUE.

3.3.2 The template language / Variable types 188

Arrays

Arrays are containers that are capable of holding a collection of any other variable type in-
cluding other arrays. An array can be a simple vector or a hash map (associative array). An
element of a vector can be accessed using an index number. The number denotes the position
of the element inside the array (the first element is zero, the second element is one, and so
on). An element of an associative array can be accessed using an identifier. Regular arrays
can be created with the ”array” (page 1102) operator. Associative arrays can be created with
the hash (page 1112) operator. The following examples demonstrate the creation of arrays
and hashes.

Example 1: Array of numbers

{array(2, 4, 8, 16)}

This example creates an array containing four numbers. The array will consist of the following
elements:

Index Value of element
0 2

1 4

2 8

3 16

Example 2: Array of strings

{array(’This’, ’is’, ’a’, ’test’)}

This example creates an array containing four strings. The array will consist of the following
elements:

Index Value
0 "This’
1 ’is’

2 a’

3 ‘test’

Example 3: Associative array

{hash(’Red’, 16, ’Green’, 24, ’Blue’, 32)}

This example creates an associative array containing three key-value pairs. The array will
consist of the following elements:

Key Value
Red 16
Green 24
Blue 32

3.3.2 The template language / Variable types 189

Objects

Template objects are created by PHP code or by special template operators. The system uses
objects to represent data structures of different kinds and sizes. For example, objects are used
to represent information about content nodes, translations, webshop orders, user accounts,
roles, policies and so on. Refer to the "Objects” (page 980) section of the "Reference” chapter
for a complete overview of the objects and their contents.

Object attributes

Objects consist of named attributes where each attribute can be a different type. The at-
tributes may represent any type of data (numbers, strings, arrays, etc.) and even other
objects. Since the attributes are named (each one has an identifier associated to it), their
contents can be easily accessed using the different identifiers. This is done in the same way
as when accessing the values of associative arrays using identifiers.

The following illustration shows the structure (with example values) of an object ("ezdate”
(page 1029)) that contains information about a date.

(see figure 3.6)

Attribute Type Value
timestamp string 567990000
is_valid boolean TRUE
year string 1988
month string 01
day string 01

Figure 3.6: The structure of the “ezdate” object.

The illustration above reveals that the "ezdate” object consists of five attributes ("timestamp”,

”is_valid”, "year”, "month” and “day”). All attributes are represented as strings except the "is_
valid” attribute, which is a boolean. The values are the actual data that the object contains.

Attribute availability

It is worth noting that while some attributes are pre-fetched/calculated when an object itself
is fetched, others are not. This means that accessing the contents of attributes may require
additional processing (usually in the form of database queries). The ”static” column in the
reference documentation for objects indicates whether the different attributes provide pre-
fetched values or if they need to be computed upon request. This information should be
helpful when it comes to optimizing your templates.

3.3.3 The template language / Variable usage 190

3.3.3 \Variable usage

Template variables must be referenced using dollar ($) notation, for example: $my variable,
$object array, etc. An eZ Publish template variable is case sensitive. In other words, $lollipop
is not the same variable as $LolliPop. Template variables can be created by the system (from
PHP code) or by the author of the template (from within template code). Regardless of
where a variable was created, it can be changed using the ”set” (page 1358) function. Some
templates have preset variables, for example, the main template (pagelayout) provides access
to a collection of variables (page 176).

Creating and destroying variables

All variables used in a template must be declared and defined by the “def” (page 1353)
function (short for define) before they can be used. A variable exists until the "undef” (page
1362) function (short for undefine) is used in order to destroy it. A previously declared
variable will be automatically destroyed at the end of the template file in which it was created.
The following example demonstrates the most basic use of the “def” and "undef” functions.

{def $temperature=32}
{$temperature}

{undef?}

The output of the example will be ”32”. After the {undef} function is called, the $tempera-
ture variable will not be available. Both the “def” and the "undef” function can be used with
multiple variables at the same time. In addition, the "undef” function can be used without
any parameters. When called without parameters the "undef” function automatically de-
stroys all variables that were previously created within the template. The following example
demonstrates how the ”def” and "undef” functions can be used to create and destroy multiple
variables at the same time.

{def $weather=’warm’ $celsius=32 $fahrenheit=90}

The weather is {$weather}: {$celsius} C / {$fahrenheit} F

{undef $celsius $fahrenheit}

The weather is still {$weather}.

{undef}

The output of this example will be:

The weather is warm: 32 C/ 90 F
The weather is still warm.

In the example above, the "def” function is used to create three new variables: $temperature,
$celsius and $fahrenheit. The “undef” function is used twice. The first time, it is used to

3.3.3 The template language / Variable usage 191

destroy the $celsius and $fahrenheit variables. The second is time it is called without param-
eters and thus the remaining variables (in this case only $temperature) will be destroyed.
For more information, please refer to the documentation page of the "def” (page 1353) and
“undef” (page 1362) functions.

Changing the contents of variables

The contents/value of a variable can be changed at any time using the ”set” (page 1358)
function. Please note that this function can be used to change the value of any variable,
regardless of if it was created by the system or inside a template. No warning will be given
if a system variable is changed. The ”set” function can be used to change the value of any
variable regardless of the variable’s current type and the type of the new value. In other
words, this function is capable of changing the type of a variable. The ”set” function can not
be used to change the value of an element/attribute of an array, hash or an object. In fact, the
elements/attributes of arrays, hashes and objects can not be changed from within template
code. The following example demonstrates the usage of the ”set” function.

{def $weather=’warm’}

The weather is {$weather}.

{set $weather=’cold’}

The weather is {$weather}.

{undef}

The output of the example will be:

The weather is warm.
The weather is cold.

Just like the ”"def” and “undef” functions, the ”set” function can work with multiple variables
at the same time. For more information, please refer to the documentation page of the ”set”
(page 1358) function.

Accessing array elements

The elements of a simple/vector array can only be accessed using numerical indexes. This
method is called ”index lookup”. The elements of an associative array can be accessed by
using the key identifiers. This method is called ”identifier lookup”. The following example
demonstrates the different lookup methods.

Index look-up

Index look-up is carried out by appending a period/dot and an index number to the name of
a simple/vector or associative array. Index look-up may also be carried out by appending a

3.3.3 The template language / Variable usage 192

matching pair of brackets that encapsulate the desired index value. The following example
demonstrates how to access the elements of a simple array using index look-up. Please note
the different syntaxes (dot and brackets).

{def $sentence=array(’Life’, ’is’, ’very’, ’good!’)}

The 1st element is: {$sentence.0}

The 2nd element is: {$sentence.1}

The 3rd element is: {$sentence[2]}

The 4th element is: {$sentence[3]}

{undef?}

The code above will output the following:

The 1st element is: Life
The 2nd element is: is
The 3rd element is: very
The 4th element is: good!

Identifier look-up

Identifier look-up can be carried out by appending a period/dot and an identifier name to
the name of an associative array. Identifier look-up may also be carried out by appending a
matching pair of brackets that encapsulate the desired index value. The following example
demonstrates how to access the elements of an associative array using the identifier look-up
method. Notice the different syntax (use of dot and brackets).

{def $sentence=hash(’first’, ’Life’,
’second’, ’is’,
’third’, ‘’very’,
>fourth’, ’good!’)}

The 1st element is: {$sentence.first}

The 2nd element is: {$sentence.second}

The 3rd element is: {$sentence[third]}

The 4th element is: {$sentence[fourth]}

{undef?}

The following output will be produced:

The 1st element is: Life
The 2nd element is: is
The 3rd element is: very
The 4th element is: good!

3.3.3 The template language / Variable usage 193

Accessing object attributes

The attributes of an object can only be accessed using the attributes’ identifiers. An identifier
is just the name of an attribute (similar to the keys of an associative array). The following
example demonstrates how the different attributes of a node object can be accessed from
within a template.

The ID of the node: {$node.node_id}

The ID of the object encapsulated by the node: {$node.object.id}

The name of the object: {$node.object.name}

First time the object was published: {$node.object.published|110n(shortdate

)} <br /
>

If the $node variable contains a node that has ID number 44 and encapsulates object number
13 named ”Birthday” published on the first of April in 2003, the following output will be
produced:

The ID of the node: 44

The ID of the object encapsulated by the node: 13
The name of the object: Birthday

First time the object was published: 01/04/2003

3

3.3.4 The template language / Array and object inspection 194

3.3.4 Array and object inspection

By using the ”attribute” (page 1217) template operator, it is possible to quickly inspect the
contents of arrays and template objects. The operator creates an overview of available keys,
attribute names and/or methods in an object or an array. By default, only the array keys
and object attribute names (also called identifiers) are shown. By passing "show” as the first
parameter, the operator will also display the values.

Important note: he dumb (page 1226) template operator is an alias of attribute() available
in 4.7 and higher. It is simpler to use and makes it possible to inspect the contents of arrays,
hashes and objects.

The second parameter can be used to control the number of levels/children that will be
explored (the default setting is 2). The following example demonstrates how the operator
can be used to inspect the contents of an “ezcontentobjecttreenode” (page 1018) object.

{$node|attribute(show, 1)}

The following output will be produced:

Attribute Type Value

node id string 2

parent node_id string 1

main node id string 2
contentobject id string 1
contentobject_version string 10
contentobject _is_published string 1

depth string 1

sort field string 8

sort order string 1

priority string 0

modified subnode string 1108118324
path_string string /1/2/
path_identification _string string 7

is hidden string 0

is invisible string 0

name string ’eZ publish’
data_map array Array(6)
object object[ezcontentobject] Object
subtree array Array(114)
children array Array(44)
children count string 44
contentobject version_ object[ezcontentobjectversion]Object

3.3.4 The template language / Array and object inspection

195

object

sort array array Array(1)
can read boolean true
can_create boolean false

can edit boolean false

can hide boolean false
can_remove boolean false

can move boolean false
creator object[ezcontentobject] Object
path array Array(0)
path_array array Array(2)
parent object[ezcontentobjecttreenodé)bject
url string 7

url alias string ?

class identifier string ’folder’
class name string "Folder’
hidden_invisible string string -/
hidden status string string "Visible’

As the output shows, there is a lot of information that can be extracted from a node object.
In addition to strings and numbers the object also consists of other objects. For example,
the creator of the node is a “ezcontentobject” (page 1000) object. The creator object can be
further inspected by doing the following:

{$node.creator|attribute(show, 1)}

The following output will be produced:

3.3.4 The template language / Array and object inspection

196

Attribute Type Value

id string 14
section id string 2

owner id string 14
contentclass id string 4

name string ’Administrator User’
is_published string 0
published string 1033920830
modified string 1033920830
current version string 1

status string 1
current object[ezcontentobjectversion]Object
versions array Array(1)
author array array Array(1)
class name string "User’
content class object[ezcontentclass] Object
contentobject attributes array Array(5)
owner object[ezcontentobject] Object
related contentobject array | array Array(0)
related_contentobject count | string 0
reverse related_ array Array(0)
contentobject array

reverse related_ string 0
contentobject count

can read boolean false
can_create boolean false

can create class list array Array(0)
can edit boolean false

can translate boolean false
can_remove boolean false
can move boolean false
data_map array Array(5)
main_parent node id string 13
assigned nodes array Array(1)
parent_nodes array Array(1)
main node id string 15

main node object[ezcontentobjecttreenod€)bject
default language string ‘eng-GB’
content action list boolean false
class identifier string ‘user’
class_group id list array Array(1)
name string ’Administrator User’
match_ingroup_id list boolean false

Again, this object consists of a lot of information. As mentioned above, the "attribute” (page
1217) operator can be used on both objects and arrays. The following example demonstrates
how to inspect the "data_map” array (which reveals the object’s attributes) of the node’s

creator object.

3.3.4 The template language / Array and object inspection

197

{$node.creator.data_map|attribute(show, 1)}

The following output will be produced:

Attribute Type Value

first name object[ezcontentobjectattributedbject
last name object[ezcontentobjectattributedbject
user account object[ezcontentobjectattributedbject
signature object[ezcontentobjectattributedbject
image object[ezcontentobjectattributedbject

3.3.5 The template language / Control structures 198

3.3.5 Control structures

The eZ Publish template language offers a selection of mechanisms that can be used to solve
common programmatic issues like for example condition control, looping, etc. The following
list shows an overview of the available mechanisms:

* JF-THEN-ELSE
* SWITCH

* WHILE

* DO...WHILE

* FOR

* FOREACH

IF-THEN-ELSE

The IF (page 1384) construct allows for conditional execution of code fragments. It is one
of the most important features of many programming languages. The eZ Publish implemen-
tation makes it possible to do conditional branching by the way of the following elements:
IF, ELSE and ELSEIF. The ELSE and ELSEIF elements are optional. The following examples
demonstrate the use of this construct.

Example 1

{if eq($var, 128)}
Hello world

{else}
No world here, move along.

{/if}

Example 2

{if eq($fruit, ’apples’)}
Apples

{elseif eq($fruit, ’oranges’)}
Oranges

{else}
Bananas

{/if}

SWITCH

The SWITCH (page 1386) mechanism is similar to a series of IF statements used on the same
expression. This construct is typically useful when the same variable needs to be compared to
different values. It executes a piece of code depending on which value that matched a given
criteria. The following example demonstrates basic use of this construct.

3.3.5 The template language / Control structures 199

{switch match=$fruits}

{case match=’apples’}
Apples

{/case}

{case match=’oranges’}
Oranges

{/case}

{case}
Unidentified fruit!

{/case}

{/switch}

If the value of the $fruits variable is ”oranges”, the following output will be produced:

Oranges

WHILE

The WHILE (page 1394) construct is the simplest loop mechanism that the template language
offers. It tells eZ Publish to execute the nested statement(s) repeatedly, as long as a given
expression evaluates to TRUE. The value of the expression is checked for every loop iteration
(at the beginning of the iteration). If the given expression evaluates to FALSE from the very
beginning, the nested statement(s) will not be executed. The following example demonstrates
basic use of this construct.

{while ne($counter, 8)}

Print this line eight times ({$counter})

{set $counter=inc($counter)}

{/while}

If the initial value of $counter is zero, the following output will be produced:

Print this line eight times (0)
Print this line eight times (1)
Print this line eight times (2)
Print this line eight times (3)
Print this line eight times (4)
Print this line eight times (5)
Print this line eight times (6)
Print this line eight times (7)

3.3.5 The template language / Control structures 200

DO...WHILE

A DO...WHILE (page 1390) loop is very similar to WHILE loops, except that the expression is
checked at the end of each iteration instead of in the beginning. The main difference is that
this construct will always execute the first iteration (regardless of how the test expression
evaluates). The following example demonstrates basic use of this construct.

{do}

Keep printing this line ({$counter})

{set $counter=inc($counter)}

{/do while ne($counter, 8)}

If the initial value of $counter is 0, the following output will be produced:

Keep printing this line (0)
Keep printing this line (1)
Keep printing this line (2)
Keep printing this line (3)
Keep printing this line (4)
Keep printing this line (5)
Keep printing this line (6)
Keep printing this line (7)
Keep printing this line (8)

FOR

Generic looping may be achieved using FOR (page 1391) loops. This construct supports loop-
ing over numerical ranges in both directions. In addition it also supports breaking, continual
and skipping. The following example demonstrates basic use of this construct.

{for 0 to 7 as $counter}
Value of counter: {$counter}

{/for}

The following output will be produced:

Value of counter:
Value of counter:
Value of counter:
Value of counter:
Value of counter:
Value of counter:
Value of counter:
Value of counter:

NONUph WP O

3.3.5 The template language / Control structures 201

FOREACH

The FOREACH (page 1392) construct can be used to iterate over arrays in different ways. The
loop can be tweaked using miscellaneous techniques. The following example demonstrates
basic use of this construct.

{foreach $objects as $object}
{$object.name}

{/foreach}

The example above will print out the names of the objects that are stored in the $objects array.
If this array stores 4 objects with the following names: "Emmett Brown”, "Marty McFly”,
“Lorraine Baines” and ”Biff Tannen”, the following output will be produced:

Emmett Brown
Marty McFly
Lorraine Baines
Biff Tannen

3.3.6 The template language / Functions and operators 202

3.3.6 Functions and operators

The eZ publish template language offers a collection of various functions (page 1330) and
operators (page 1099) that can be used to carry out different tasks. In addition, it is possible
to extend the system by creating custom operators for special needs. Custom operators have
to be programmed in PHP.

Template functions

A function takes a set of named parameters, carries out a specific task and returns a result. It
can be called anywhere in a template using the following syntax:

{function_name parameterl=valuel parameter2=value2 ...}

A function may take none, one or several parameters. The parameters must be specified
after the function name, separated by spaces. Since each parameter is specified using the
parameter’s name, the parameters can be provided in any order. Each parameter must be
assigned a value using the equal sign. The following illustration shows the typical usage of a
commonly used function.

(see figure 3.7)

FUNCTION NAME PARAMETER VALUE PARAMETER VALUE
¥

node view guil icontent node=S$my node wview=!

¥ v

A A

PARAMETER NAME PARAMETER NAME

Figure 3.7: Typical components of a function call.

The example above calls the "node view gui” (page 1378) function. This function displays a
node by including the template that is associated with the view mode. The node is specified
using the ”content node” parameter. The desired view mode is specified using the "view”
parameter.

Template operators

An operator takes unnamed parameters, carries out a specific task and returns a result. In
addition, an operator is capable of handling a parameter which is passed to it using a pipe. It
can be called anywhere in a template using the following syntax:

{$input_parameter|operator_name(parameterl, parameter2 ...)}

Because the operator only takes unnamed parameters, the parameters must be specified in
the order dictated by the operator’s documentation page. In addition, the parameters must
be separated by commas. The following illustration shows the typical usage of a commonly
used operator.

(see figure 3.8)

3.3.6 The template language / Functions and operators 203

INPUT PARAMETER OPERATOR MAME VALUE OF PARAMETER 2

(Syvesterday eveninglidatetime!('custom’ '"$h:%i"

M
A A

PIPE VALUE OF PARAMETER 1

Figure 3.8: Typical components of a template operator call.

The example above demonstrates the usage of the "datetime” (page 1140) operator. This op-
erator can be used to convert a UNIX timestamp to a human readable format. The timestamp
is provided by the $yesterday evening variable as the input parameter. The first parameter
tells the operator that the output should be formatted using a custom schema. The schema is
defined by the second parameter (hours : minutes).

Piping

An operator takes input on the left hand side and produces output on the right hand side. A
collection of operators can be glued together using pipes. A pipe makes sure that the output
from one operator is presented as the input parameter to another operator. The following

example demonstrates how pipes and operators can be used to create a string.

{concat(’To ’>, ’The ’)|prepend(’Back ’)|append(’Future’)}

The following output will be produced:

Back To The Future

3.4 Basic template tasks 204

3.4 Basic template tasks

This section sheds light on some common issues related to template development.

Template inclusion

A template file can be included using the ”include” (page 1345) function. Since this function
makes it possible to include any file from any location within the eZ Publish directory, it
must be told that it should look for the file within the design directory. This can be done
by prefixing the path/filename with "design:”. The following example demonstrates how the
include function can be used to include a template file called "footer.tpl”, which is located in
the templates directory of a design.

{include uri=’design:footer.tpl’}

If the requested file is not found within the main design of the siteaccess, the system will
search for it in the additional designs and the standard design. Please refer to the documen-
tation of the automatic fallback system for more information about this feature.

Output washing

Variables that may contain bogus strings should always be washed using the "wash” (page
1289) operator. This operator makes sure that the output does not contain any elements that
may mess up the HTML generated by eZ publish. The following example demonstrates how
the wash operator works.

{def $bogus_string=’hello < world’}
{$bogus_string|wash()}

The following output will be produced:

hello < world

E-mail address obfuscation

In addition to securing proper output, the wash operator can also be used to obfuscate E-mail
addresses on a web page. An obfuscated E-mail address has a less chance of getting picked up
by a robot searching for E-mail addresses to put on a spammer’s list. The following example
demonstrates how the wash operator can be used with an E-mail address.

{def $email_address=’allman@example.com’}
{$email _address|wash(’email’)}

The following output will be produced:

3.4 Basic template tasks 205

allman[at]example[dot]com

String concatenation

The ”concat” (page 1256) operator makes it possible to glue several strings together in order
to produce a single string. The following example demonstrates how this operator works.

{def $my_string=’sausage’}
{concat(’Liver ’, $my_string, ’ sandwitch’)}

The following output will be produced:

Liver sausage sandwitch

Custom view parameters

The URL of a node view request may contain custom parameters. The custom view parame-
ters must be specified at the very end of the URL using a special notation. For each parameter,
a name and a value must be specified. The name must be encapsulated by parenthesis. Each
element must be separated by slashes. The following example demonstrates how custom pa-
rameters can be used (in addition to the view parameters) in a system URL that requests a
node.

http://www.example.com/content/view/full/13/(color)/green/(amount) /34

The same parameters can be appended to the virtual URL of the node:

http://www.example.com/company/about_us/(color)/green/ (amount) /34

When custom view parameters are used, the system will create an associative array using
the name of the provided parameters as the keys. All parameter values will be treated as
strings. The array will be represented by the $view parameters variable in the template. The
parameters given in the examples above will produce an associative array with the following
contents:

Key Type Value
color string green
amount string 34

The following example demonstrates how the custom view parameters can be accessed in the
template that is used to display the node.

The color is: {$view_parameters.color}

The amount is: {$view_parameters.amount}

The following output will be produced:

3.4 Basic template tasks 206

The color is: green
The amount is: 34

Custom view parameters in ”edit.tpl” templates

In eZ Publish versions prior to 3.9, you cannot pass custom view parameters to the “edit”
view of the ”content” module. From 3.9, it is possible and thus you can use custom view
parameters in the “edit.tpl” templates. The following example demonstrates a typical system
URL in this case:

http://www.example.com/content/edit/13/03/eng-GB/ (color)/green/ (amount) /34

This will instruct eZ Publish to use custom view parameters, specified in the link above, when
editing the “eng-GB” translation of the third version of the thirteenth content object in the
system.

3.4.1 Basic template tasks / URL handling 207

3.4.1 URL handling

Whenever a link, a non-content specific image, a stylesheet, etc. is to be included, a suitable
template operator must be used in order to ensure that the path to the included file is correct.
At any time, one of the following operators should be used:

* ezurl
* ezimage

* ezdesign

ezurl

The "ezurl” (page 1299) operator makes sure that a URL works regardless of the location of
the eZ Publish folder, the access method (page 135) and the environment that eZ Publish is
running in (non virtual host, virtual host, etc.). It is only the eZ Publish specific part of the
URL that needs to be provided. The rest (http://, host, domain, directory, siteaccess, port,
etc.) will be generated by the operator. The final output will be a valid address. This approach
makes it possible to use generic URLs in template without the risk of having to modify every
address when the site is moved and/or when the access method is changed. By default, the
“ezurl” operator outputs an address that is already encapsulated by two double quotes. In
other words, the output can be fed directly to an hyperlink reference in the HTML code. The
following examples demonstrate the usage of this operator.

Link to a module/view (using a system URL)

Login

The example above demonstrates how to create a link to the login view of the user module.
The ”/user/login” is just an example, another example would be a link to a node: ”/content/
view/full/34”. If eZ Publish is running in a directory called “ezpublish” on www.example.com
using the URL access method and the name of the siteaccess is “my company”, the operator
will produce the following output:

“http://www.example.com/ezpublish/index.php/my company/user/login”

If eZ Publish is running in a virtual host mode and uses the host access method, the following
URL will be produced:

“http://www.example.com/user/login”

Link to a node (using the node’s virtual URL)

When a link to a node (using the node’s virtual URL, also known as URL alias) is created, the
address must be piped through the ”ezurl” operator. The reason for this is that the internal
URL table only contains the eZ Publish specific part of the URLs. The following example
demonstrates how to use the "ezurl” operator to create a valid virtual URL for a node.

3.4.1 Basic template tasks / URL handling 208

Link to a node

If the URL alias of the node is "company/about_us” and eZ Publish is running in a virtual host
environment using the host access method, the following URL will be produced:

“http://www.example.com/company/about_us”

For information about how eZ Publish treats URLs, please refer to the "URL translation” (page
141) section of the "Concepts and basics” chapter.

ezimage

The ”ezimage” (page 1296) operator works in the same way as the “ezurl” operator (described
above), except that it does not include the ”index.php” part. This operator must be used every
time a non content specific image is included in a template. The image must be placed in
the "images” directory of one of the designs that are used by the siteaccess. The operator
produces a valid link to the image regardless of the directory, access method and/or the
environment that eZ Publish is running in. The following example demonstrates how the
“ezimage” operator should be used.

If eZ Publish is using the host access method and the siteaccess is using a design called "my_
design”, the operator will produce the following output:

“http://www.example.com/design/my_design/images/women.jpg”

If the image is placed inside a sub-directory within the "images” directory, the name of the
subdirectory must be specified in the template. If the requested file is not found within the
main design of the siteaccess, the system will search for it in the additional designs and the
standard design. Please refer to the documentation of the automatic fallback system for more
information about this feature.

ezdesign

The ”ezdesign” (page 1295) operator works in the same way as the “ezurl” operator (de-
scribed above), except that it does not include the ”index.php” part. This operator must be
used every time a design element (style sheets, JavaScript, etc.) is included in a template.
The operator takes care of producing a valid link for the given design component by provid-
ing the root to the design directory which contains the target file. The following example
demonstrates the proper way of including a CSS file using this operator.

<style type="text/css">
@import url({’stylesheets/my_stuff.css’|ezdesign()});
</style>

3.4.1 Basic template tasks / URL handling 209

If eZ Publish is using the host access method and the siteaccess is using a design called "my_
design”, the operator will produce the following output:

"http://www.example.com/design/my design/stylesheets/my stuff.css”

If the requested file is not found within the main design of the siteaccess, the system will
search for it in the additional designs and the standard design. Please refer to the documen-
tation of the automatic fallback system for more information about this feature.

3.5 Information extraction 210

3.5 Information extraction

Information that is stored by eZ Publish can be extracted using the "fetch” (page 1135) tem-
plate operator. This operator gives access to the fetch functions that a module provides. It is
typically used to extract nodes, objects, etc. using the content module. The fetch operator can
only be used with modules that provide support for data fetching. Please refer to the ”Fetch
functions” (page 1425) section of the reference chapter for a complete overview of the fetch
functions. The following model and table shows the usage and the parameters of the fetch
operator.

fetch(<module>, <function>, <parameters>)

Parameter Description

module The name of the target module.

function The name of the fetch function within the
target module.

parameters An associative array containing the function
parameters.

A module’s fetch functions and parameters are defined in the "function_definition.php” file
within the directory of the module.

Fetching a single node

The following example demonstrates how the fetch operator can be used to extract a single
node from the database.

{def $my_node=fetch(content, node, hash(node_id, 13))}

{undef?}

The example above instructs eZ Publish to fetch a single node from the content module. Only
one parameter is given, which is the ID number of the node that should be fetched. The
operator will return an “ezcontentobjecttreenode” (page 1018) object which will be stored in
the $my node variable. This variable can then be used to extract information about the node
and the object that it encapsulates. For example, it is possible to extract the name, attributes
and the time when the object was published. If the node is unavailable / non-existing or
the currently logged in user doesn’t have read access to it, the operator will return a FALSE
boolean value.

Fetching multiple nodes

It is possible to fetch all the nodes that are directly below a specific node. This can be done
by using list instead of node as the second parameter to the "fetch” operator. The following
example demonstrates how the fetch operator can be used to extract all the nodes that are
directly below node number 13.

3

3.5 Information extraction

211

{def $my_node=fetch(content, list, hash(parent_node_id, 13))}

{undef?}

The operator will return an array of ”ezcontentobjecttreenode” (page 1018) objects. The
list fetch function of the content module can take several parameters. These parameters are
optional and can be used to finetune the fetch for example by filtering out specific nodes. The
following table gives an overview of the most commonly used parameters.

Parameter Description

sort by The method and direction that should be
used when the nodes are sorted (must be
specified as an array).

limit The number of nodes that should be fetched.

offset The offset at which the fetch should start.

class filter type The type of filter that should be used, either
”include” or "exclude”.

class filter array The type of nodes that should be included or
excluded by the filter (must be specified as
an array).

The following example demonstrates how to fetch an alphabetically sorted array of the ten
latest articles that are directly below node number 13.

{def $my_node=fetch(content,

{undef?}

list,

hash(parent_node_id, 13,

limit,

10,

class_filter_type, include,
class_filter_array, array(’article’)))}

Please refer to the documentation page of the "list” (page 687) fetch function for a complete
overview of the available parameters and examples of usage.

3.5.1 Information extraction / Outputting node and object data 212

3.5.1 Outputting node and object data
Once an "ezcontentobjecttreenode” (page 1018) object representing a node is available in a
template variable, it can be used to output information about the node and the contents of

the object that the node encapsulates. The following text demonstrates the extraction of the
most common elements.

General information
The name of the object

{$node.name|wash}

The name of the object is directly available through the node (in other words it is possible to
reach it by $node.name instead of $node.object.name). The "wash” (page 1289) operator is
used for making sure that the output doesn’t contain any bogus characters and/or sequences
that may mess up the HTML.

The date/time when the object was first published

{$node.object.published|110n(’shortdatetime’)}

Since the publishing value is stored as a UNIX time-stamp, it must be properly formatted for
output. This can be done by using the ”110n” (page 1145) operator, which makes it possible
to format different types of values according to the current locale settings.

The date/time when the object was last modified

{$node.object.modified|110n(’shortdatetime’)}

Since the modification value is stored as a UNIX time-stamp, it must be properly formatted for
output. This can be done by using the ”110n” (page 1145) operator, which makes it possible
to format different types of values according to the current locale settings.

The name of the user who initially created the object

{$node.object.owner.name|wash}

The name of the user who last modified the object

{$node.object.current.creator.name|wash()}

The name of the class which the object is an instance of

3.5.1 Information extraction / Outputting node and object data 213

{$node.object.class_name|wash()}

Object attributes

The attributes of the object can be reached by the way of the "data_map” method. This
method returns an associative array of ”ezcontentobjectattribute” (page 1009) objects where
each object represents one of the attributes. The keys of the array are the class attribute
identifiers. The following example demonstrates how an attribute called "first name” can be
reached using the object’s data map.

{$node.object.data_map.first_name}

The example above will not produce any valuable output because the requested data needs
to be formatted. There are two ways of outputting the contents of attributes:

* Raw output (the ”.output” extension)

* Formatted output (the "attribute_view gui” function)
The main difference between raw and formatted output is that formatted output makes use
of a template which in turn outputs the requested data. Raw output simply outputs the data
within the same template where the request for output was issued. Output should always
be presented through the "attribute view _gui” (page 1367) function. The raw output method

should only be used when/if necessary (for example when checking the value of an attribute
using an IF statement).

Raw output
Raw output is exactly what the definition indicates: a raw dump of the contents that are
stored by the attribute. The actual syntax depends on the datatype that represents the at-

tribute. In most cases, it is possible to generate the output by appending ”.output” to the
identifier.

Generic solution

The following example demonstrates how to output the contents of an attribute called "my_
attribute”.

{$node.object.data_map.my_attribute.content}

XML block

The following example demonstrates how to output the contents of an XML block called "my_
xml”.

3.5.1 Information extraction / Outputting node and object data 214

{$node.object.data_map.my_xml.content.output.output_text}

Image

The following example demonstrates how to output an image stored by an attribute called
“my image”.

<img src="{$node.object.data_map.my_image.content [image_size] .full_path}"

o

Formatted output

Each datatype has a set of templates which are used to display the contents in different
contexts. There are at least two templates for each datatype: a view template and an edit
template. While the view template is used to display information, the edit template is used
when the data is being edited. The default templates for the datatypes are located within the
standard design: ”/design/standard/templates/content/datatype”.

The "attribute view gui” (page 1367) function makes it possible to display the contents of an
attribute by inserting the view template of the datatype that the attribute uses. The following
example demonstrates how this function can be used.

{attribute_view_gui attribute=$node.object.data_map.name_of_any_attribute}

The example above will generate proper output for any attribute (regardless of the datatype).

3.6 The template override system 215

3.6 The template override system

The template override system makes it possible to use other templates than the default ones
(specified in the code for the different views and templates). This mechanism allows the
creation of template overrides for virtually any template that is used by eZ Publish (includ-
ing templates that are requested by the ”include” (page 1345) template function using the
“design:” prefix). In particular, template overrides are typically useful for displaying different
types of nodes in different ways.

An override for a view template is usually activated by a set of conditions. If the conditions
match, the alternate template will be used. Different views provide different conditions, some
views do not provide any conditions at all. Please refer to the "Template override conditions”
(page 1397) section of the "Reference” chapter for a complete overview of the available match
rules. The most flexible set of conditions are provided by the "view” view of the ”content”
module (used when a node is displayed). The following illustration shows how the override
mechanism plugs into the rest of the system.

(see figure 3.9)

Use the alternate
Template request ——— —{ (=)= template specified

by the owverride

Use the default template

Figure 3.9: The override system.

The template overrides must be defined in the ”override.ini.append.php” file of a siteaccess.
This file consists of override blocks. A block is a named set of rules that tells eZ Publish to use
an alternate template in a specific situation. For each block, the following information must
be specified:

* A unique name for the override.
* The template that should be overridden.
* The template that should be used instead of the one being overridden.

* The name of the directory in which the override template resides (usually “templates”).

¢ A set of conditions/rules that control when the override should be activated.

Please note that the rules/conditions are optional. If no rules are specified, the override will
always be active. The following illustration shows a typical example of a template override
with additional explanations.

(see figure 3.10)

The example above defines an override called ”special folders”. This override will be used
when the system is requested to display a node using the full view mode. The override will
only be activated if the object referenced by the node is an instance of the folder class and if it
belongs to section number 34. When the override is activated, the system will attempt to use

3.6 The template override system 216

The name of The template that

the override should be replaced
The directory [special folders) / The template
l’::f;c?hmi Source=node/view/full.tpl that should be
i I‘mated MatchFile=special_folder.tpl €——— used instead of

the one specified

Subdir=templates
as the source

Match([class_identifier]=folder

/3(Match [section] =34
Conditions e / \

Condition #2: Condition #1;

Activates the override if Activates the override if
the object being accessed the object is of an instance
belongs to section number 34 of the folder class

Figure 3.10: Template override example.

the alternate template (”/override/templates/special folder.tpl”, located in the main design).
If eZ Publish is unable to find the alternate template, it will look for it in the additional designs
and the standard design. Please refer to the documentation page of the "Automatic fallback
system” for more information about this feature.

Multiple / conflicting overrides

The priorities of the overrides are determined by their positions in the file. If there are several
overrides with similar/equal rules, eZ Publish will use the first override that matches and
thus the rest of the overrides will be omitted. Because of this, overrides that are for example
activated on a node ID or an object ID basis should always be placed first; otherwise they
might never be triggered because of the presence of a more generic override with a higher

priority.

3.6.1 The template override system / Template override example 217

3.6.1 Template override example

The following example demonstrates how the template override system can be used to display
alternate templates in different situations.

Let’s say that we have a simple content tree made up of two folders: "News” and "Products”.
The "News” folder contains news articles and the "Products” folder contains products. The
following illustration shows an example of such a tree.

(see figure 3.11)

// \\ // \

Article Article Article Product Product Product

=| |OZ] [OZ] |O=

Figure 3.11: Example content node tree.

Without any overrides, eZ publish will most likely display all the nodes using the same tem-
plate. This would probably be the default full view template located in the standard design.
However, what if we wish to display custom/alternate templates for the different nodes? We
would perhaps like the system to behave in the following way:

* Display a special "welcome” template when the "My site” node is accessed.
* Display a custom folder template when a folder is accessed.
* Display a custom article template when a news article is accessed.

* Display a custom product template when a product is accessed.

The requests in the list above can be easily achieved by creating a couple of overrides. The
welcome page should be solved using an override that is triggered by the identification num-
ber of the "My site” node. The rest of the requests can be solved using the class identifier key,
which allows an override to be triggered when an object of a certain class is accessed. The
following example shows the contents of an ”override.ini.append.php” file that makes this
possible:

Override for welcome page
[welcome_page]
Source=node/view/full.tpl
MatchFile=my_welcome.tpl
Subdir=templates
Match[node]=2

3.6.1 The template override system / Template override example 218

Override for folders
[my_folder]
Source=node/view/full.tpl
MatchFile=my_folder.tpl
Subdir=templates
Match([class_identifier]=folder

Override for articles
[news_articles]
Source=node/view/full.tpl
MatchFile=my_article.tpl
Subdir=templates
Match([class_identifier]=article

Override for products
[products]
Source=node/view/full.tpl
MatchFile=my_product.tpl
Subdir=templates
Match([class_identifier]=product

The alternate templates must be placed in the “override/templates” subdirectory of the main
design used by the siteaccess. The following illustration shows where the templates would be
located in a design called "example”.

(see figure 3.12)

1 eZ publish
=17 design
=1 example
=[] templates

: pagelayout.tpl
=[] override

=] templates
my_article. tpl
my _folder.tpl
my _product, bpl

Figure 3.12: Pagelayout + override templates in example design.

When the system is in use, the different overrides would be activated based on the given
conditions. The following illustration shows where/when the different alternate templates
would be used.

(see figure 3.13)

Every time a node referencing a folder object is viewed, the system will use the "my folder.tpl”
template. When an article is viewed, the ”"my article.tpl” template will be used. When a
product is viewed, the "my product.tpl” template will be used. When node number 2 (the
”My site” node) is viewed, the "my welcome.tpl” will be used.

3.6.1 The template override system / Template override example

219

| WELCOME PAGE TEMPLATE |
1 tpl |

«ofOverride/

FOLDER TEMPLATE

.../ override [templates /my_folder.tpl

frry_

Article Article Article Product Product Product
ARTICLE TEMPLATE] PRODUCT TEMPLATE
o fowerride/emplates/my_article.tpl : o fOverride/ templates my_product.tpl

Figure 3.13: Template override example.

Chapter 4

Features

This part of the 4.x documentation is for eZ Publish 4.0, only reference section (page 491) is
common for all eZ Publish 4.x versions as well as eZ Publish 5.x "LegacyStack”, please select
the version you are using for the most up to date documentation!

This chapter contains information about miscellaneous eZ Publish features along with instruc-
tions revealing how to configure and use them.

220

http://doc.ez.no/eZ-Publish/Technical-manual

4.1 Audit trailing 221

4.1 Audit trailing

It is possible to automatically generate audit logs based on what the users are doing with the
system. This feature can be useful for big sites with many administrators and editors where
information about various operations should be logged and stored. For example, auditing
makes it possible to find out which user that removed content, from which IP address the
request came from and so on.

The system provides a set of built-in audit functions that make it possible to generate audit
logs for different types of activities. At minimum, for every operation, the system logs the
following information:

* When it happened (time-stamp)
* Where the request came from (IP address)

* Which user that did it (username and ID number)

Note that most audit functions provide additional information. The following example shows
how a record in one of the log files look like after a node has been moved.

[May 23 2007 14:47:58] [127.0.0.1] [editor:16]

Node ID: 124

01d parent node ID: 2

New parent node ID: 59

Object ID: 114

Content Name: Folder

Comment: Moved the node to the given node: eZContentObjectTreeNode: :move()

The following table shows the available built-in audit functions along with when they are
triggered, what kind of information that is actually logged and the default log file where the
information is stored.

Audit function Activity Logged Default log file
information
user-login Successful login at- login.log
tempts *
Timestamp
* IP ad-
dress
* User
(name:ID)
user-failed-login Failed login failed login.log
attempts *
Timestamp
* IP ad-
dress
* User
(name:ID)
content-move Location change of content move.log
content *

4.1 Audit trailing

222

Timestamp
 IP ad-
dress
 User
(name:ID)
 0ld
parent node
ID
 New
parent node
ID
 Object
ID
 Object
name

Comment

content-delete

Removal of content

Timestamp
 IP ad-
dress
 User
(name:ID)
 Node
ID
 Object
ID
 Object
name

Comment

content delete.log

role-change

Role and policy
changes

Timestamp
 IP ad-
dress
 User
(name:ID)
 Role
ID
 Role
name

Comment

role_change.log

role-assign

Role assignment to
users and groups

Timestamp
 IP ad-
dress

role_assign.log

4.1 Audit trailing 223

* User
(name:ID)

* Role
ID

* Role
name

* Object
name

*
Comment

section-assign Section section_assign.log

assignments *
Timestamp

* IP ad-
dress

* User
(name:ID)

*
Section ID

*
Section name

* Node
ID

* Object
ID

* Object
name

*
Comment

order-delete Removal of web- order delete.log

shop orders *
Timestamp

* IP ad-
dress

* User
(name:ID)

* Order
ID

*
Comment

Configuration

By default, the auditing feature is turned off. In order to use audit trailing on your site,
enable the "Audit (page 1471)” setting located in the ”[AuditSettings]” section of an override
for the ”audit.ini” configuration file. Using the "AuditFileNames (page 1470)” configuration
array located in the same file, you can specify which types of activities that should be logged
(which audit functions that should be used) and to which files they should be logged. The
audit function names must be the array keys and the log file names should be the values.

4.1 Audit trailing 224

Note that the default configuration logs everything to a collection of files (refer to the table
in the previous section for details).

The "LogDir (page 2319)” setting can be used to specify where the audit log files should be
stored. The default directory is ”"log/audit”. This path refers tp VarDir (page 2321) setting,
defined in site.ini.

Example

Let’s say that you wish to audit successful log-in attempts and changes to roles and policies
while ignoring all other activities. Start by creating an override for "audit.ini” and making
sure that it contains the following lines:

[AuditSettings]

Audit=enabled

LogDir=log/my_audit

AuditFileNames[]

AuditFileNames [user-login]=login.log
AuditFileNames [role-change]=role_change.log

Information about successful log-in attempts will end up in the ”login.log” file. Information
about role and policy changes will be put in the "role change.log” file. Both files will be
located in the ”"<VarDir>/log/my audit” directory. Each record in these files will contain a
time-stamp pointing to the exact date and time when an operation was performed, which
user that is associated with it (username and ID number) and which IP address the request
came from. Records related to role and policy changes will have additional information.

Creating new audit functions

This section provides tips for PHP developers who want to create their own audit functions.

Sometimes you may need to create a new audit function, i.e. to make the system log infor-
mation about a specific operation to a particular audit log file. For example, if you wish to
create a new audit function called "my-new-audit” and store information about operations to
a file called ”info.log”, you can do the following:

1. Make sure that the ”Audit (page 1471)” setting located in the [AuditSettings] section
of an override for ”audit.ini” is enabled and add a new element to the "AuditFileNames
(page 1470)” configuration array by inserting the following line:

AuditFileNames [my-new-audit]=info.log

2. In the PHP code which defines the operation that should be logged, you can do some-
thing like this:

eZAudit: :writeAudit(’my-new-audit’, array(’User id’ => $userID,
’Comment’ => ’The operation XYZ was performed.’));

Elements like 'Name of something’ => <valueOfSomething> define which information
that should be written to the ”info.log” file when the operation is performed.

4.1 Audit trailing 225

For example, a record in the log file can look like this:

[May 23 2007 14:44:04] [127.0.0.1] [anonymous:10]
User id: 10
Comment: The operation XYZ was performed.

4.2 Policy functions

226

4.2 Policy functions

The built-in access control mechanism (page 149) of eZ Publish is based on roles and policies.
A policy is a rule that grants access to a specific function or all functions of a module (page
137). The functions are assigned to the module’s views and thus the access requirements for

a view are controlled by the functions that are assigned to it.

The following code (taken from the eZ Publish source) shows how the function-view as-
signments of the "notification (page 810)” module are specified in ”kernel/notification/

module.php”.
<7?php

$Module = array("name" => "eZNotification",
"variable_params" => true);

$ViewList = array();

$ViewList ["settings"] = array(
"functions" => array(’use’),
"script" => '"settings.php",
’ui_context’ => ’administration’,
"default_navigation_part" => ’ezmynavigationpart’,
"params" => array(),
’unordered_params’ => array(’offset’ => ’0ffset’));

$ViewList ["runfilter"] = array(
"functions" => array(’administrate’),
"script" => "runfilter.php",
’ui_context’ => ’administration’,
"default_navigation_part" => ’ezsetupnavigationpart’,
"params" => array());

$ViewList ["addtonotification"] = array(
"functions" => array(’use’),
"script" => "addtonotification.php",
’ui_context’ => ’administration’,
"default_navigation_part" => ’ezcontentnavigationpart’,
"params" => array(’ContentNodeID’));

$FunctionlList[’use’] = array();
$FunctionList[’administrate’] = array();

7>

As the code shows, there are three views and two functions assigned to them.

While the

“administrate” function is assigned to the "runfilter” view, the "use” function is assigned to

the "addtonotification” and ”settings” views.

4.2 Policy functions 227

Multiple function assignments

A view can have several functions assigned to it. From version 3.9.3, the system makes use of
logical operators ("and”, "or”) within the function-view assignments. The following examples
show how this works.

Example 1

The "tipafriend (page 780)” view of the ”content” module has two functions assigned. The
following code is taken from ”kernel/content/module.php”.

$ViewList [’tipafriend’] = array(
>functions’ => array(’tipafriend’, ’read’),
’default_navigation_part’ => ’ezcontentnavigationpart’,
’script’ => ’tipafriend.php’,
’params’ => array(’NodeID’));

The code in this example specifies that a user must be granted access to both the "tipafriend”
and "read” functions in order to use the "tipafriend” view (which is a part of the "content”
module). Note that there is an alternate way of specifying this, refer to the example below.

>functions’ => array(’tipafriend and read’),

Also, note that the “and” operator can be either "and” or "&&”.

Example 2

The list (page 883)” view of the ”section” module has three functions assigned. The following
code is taken from "kernel/section/module.php”.

$ViewList[’1list’] = array(
>functions’ => array(’view or edit or assign’),
’script’ => ’list.php’,
’default_navigation_part’ => ’ezsetupnavigationpart’,
"unordered_params" => array("offset" => "Offset"),
‘params’ => array());

The code above specifies that a user must be granted access to either the "view” or the "edit” or
the ”assign” function in order to use the ”list” view (which is a part of the ”section” module).
Note that that the “or” operator can be either "or” or ”||”.

Missing functions

Some modules do not have functions (for example, this is true for the ”search” and ”collab-
oration” modules). If this is the case, granting users access to that module means that the
users have access to all of the module’s views.

4.2 Policy functions 228

But in cases where a module has both views with functions assigned as well as views without
functions assigned, only users with access to the entire module will have access to the views
were no functions are assigned.

Additional notes for earlier versions

In eZ Publish versions prior to 3.9.3 (except 3.8.9 and later versions of the 3.8 branch), grant-
ing access to a function of a module means that the user(s) will get access to the following:

* Views that have the function assigned.

* Views that do not have any functions assigned.

For example, in eZ Publish version 3.9.2, there are no functions assigned to the ”discount-
groupview (page 914)” view of the "shop” module. Anonymous users that have access to the
"buy” function of the ”"shop” module can access the ”discountgroupview” view (along with
other views of the ”"shop” module that do not have any functions assigned to them). This was
changed in versions 3.10.0 betal, 3.9.3 and 3.8.9 because of security reasons. Refer to the
release announcement for more information.

In order to optimize the functionality of the access permissions when using earlier versions,
it is best that modules either have views with functions assigned or views without functions
assigned to them, but not both.

Function limitations

A policy (which grants access to a module’s function) can be further restricted by function
limitations. This can only be done if the function itself supports limitations. A function may
support none, one or several limitations. The following code shows how the available limita-
tions for the ”diff”, ”hide” and "tipafriend” functions of the “content” module are specified in
“kernel/content/module.php”.

$FunctionList[’diff’] = array(’Class’ => $ClassID,
’Section’ => $SectionID,

’Owner’ => $Assigned,

’Node’ => $Node,

’Subtree’ => $Subtree);

$FunctionList[’hide’] = array(’Subtree’ => $Subtree);

$FunctionList[’tipafriend’] = array(Q);

As the code shows, the ”diff” function supports five limitations, the "hide” function supports
one limitation and the “tipafriend” function supports no limitations. Refer to the ”Access
control” section of the ”Concept and basics” chapter for an overview of the available function
limitations.

http://ez.no/community/news/ez_publish_security_fixes_3_9_3_and_3_8_9

4.3 Multi-language 229

4.3 Multi-language

In eZ Publish 3.7 and earlier versions, you have to specify one primary / main language that
affects every content object (i.e. each object must exist at least in this language). In addition,
you are allowed to specify additional languages which the content objects can be translated
to. The multi-language functionality is implemented at the version level and allows an object’s
version to exist in several languages (a language in this case is referred to as a translation).
One disadvantage of the old solution is that when several translations are needed, only one
translator can work on the object. In other words, the translators must work sequentially and
thus wait for each other because only one user is allowed to edit an object’s version. This
functionality has been changed.

From 3.8, there is no need for primary / main language anymore. You can have for example
one article which is only available in English and another article which is only available
in French. After choosing the languages for your content objects, it is possible to translate
them to any of these languages. The translations of the same object can be created and edited
separately and simultaneously by multiple users (a user only edits one version and translation
at a time). The next subsections will briefly explain some main principles and terms that will
be used when describing the multi-language functionality.

Translatable class attributes

From 3.9, it is possible to translate the class names and the attribute names. In other words,
you can for example have “Car” and ”Bil” as class names in English and Norwegian along
with "Top speed” and "Topphastighet” as attribute names. Refer to the "Translatable class
attributes (page 244)” documentation page for more information.

Locales

A locale is a set of country specific settings i.e. language, character sets, number formats, cur-
rency format, date and time format, abbreviations of months and weekdays etc. eZ Publish
provides many default locale settings where each locale is described in an INI file located in
the ”share/locale” directory. These configuration files are named according to locale identi-
fiers.

A locale identifier consists of a three-letter language code and a two-letter uppercase country
code e.g. "eng-US” (English, USA) or "nor-NO” (Norwegian, Norway). Language and country
codes are specified by ISO 639 and ISO 3166-1 alpha-2 standards accordingly.

eZ Publish uses the "eng-GB” locale by default. Please refer to the "Configuring your site
locale (page 233)” section for information about setting locale for your site, translating the
administration interface, creating custom locales etc.

Default language

From 3.8, the "ContentObjectLocale (page 2367)” INI setting does not specify the primary /
main language but the default language. This language will be used as the default value in
PHP functions that support an optional parameter for language. The default value of this INI
setting is "eng-GB”.

http://en.wikipedia.org/wiki/ISO_639
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

4.3 Multi-language 230

Example

Let’s say that you have specified "nor-NO” in the "ContentObjectLocale” setting. In this case,
if you try to instantiate an object of some class using the ”eZContentClass::instantiate()”
function and do not explicitly specify the language to use then the Norwegian language will
be used.

Translatable country names

From 3.9, it is possible to translate the names of countries to different languages. For example,
you can instruct the system to use ”"Frankrike” instead of "France” and "Norge” instead of
"Norway” whenever the list of countries is displayed on a siteaccess where Norwegian locale
is used. Refer to the "Translatable country names (page 249)” documentation page for more
information.

Translation languages

It is possible to choose the languages that you wish your content to be created in and/or
translated to. This set of languages is referred to as translation languages. These can be
managed via the administration interface (page 242). The maximum number of languages
that can be used simultaneously is 30.

Initial/main language

An object can be created in any of the languages that have been added either using the setup
wizard or the "Languages” part of the ”"Setup” tab in the administration interface. When an
object is created, it’s initial/main language will be set to the language that was used during
creation. For example, if an article is created in Hungarian, it’s initial/main language will of
course be set to Hungarian.

Content that is in the initial/main language can not be removed from the object. However,
if the contents of the object exists in several languages, the initial/main language can be
changed and thus content that is not in the initial/main language can be removed. Changing
the initial/main language and removing languages/translations from an object can be done
from within the "Languages” window (in the first three tabs) in the administration interface.

Important note
Please note that the terms "initial language” and "main language” refer to the same thing.

While the code and database tables use "initial language”, the administration interface uses
“main language”. This inconsistency will hopefully be fixed in a future release.

Site languages

From 3.8, you can specify which languages the contents of a site should be displayed in.
This set of languages is referred to as site languages. These languages can be controlled

4.3 Multi-language 231

per siteaccess using the ”SiteLanguageList[]” configuration setting located under the ”[Re-
gionalSettings]” section of the siteaccess ”site.ini.append.php” file. You can specify the site
languages and their priorities by adding the corresponding locale identifiers to this array. The
languages that appear at the top will get higher priority than the others. The first element in
this array determines the most prioritized language. The system will try to display content in
this language first. If an object is not translated to this language then the second prioritized
language (specified as the second element of the array) will be displayed. If an object does
not exist in this language, the third prioritized language will be used and so on. If an object
does not exist in any of the site languages, it will not be shown unless it is always available
or if you configure the siteaccess to display untranslated content.

Please note that if the ”SiteLanguageList” setting is not specified, the system will use the old
”ContentObjectLocale” setting and thus only the default language will be shown.

Example

Let’s say that your translation languages are English, French and Norwegian. If you specify
two of them as site languages for your public siteaccess (for example English as the most
prioritized language and French as the second prioritized one), the system will display content
in these two languages to your visitors while Norwegian content will not be shown. If you
create one article in English, another one in French and the third one in Norwegian, then only
first and second article will be displayed. If you translate the third article from Norwegian
into one of the site languages, the translated version of the article will be displayed on your
site while the original Norwegian version will still not be shown. If an article is available in
both English and French, it will be displayed in English (since English is the most prioritized
language for the siteaccess).

Please refer to the “Configuring the site languages (page 237)” section for more information
about site languages.

Objects which are always available

Some objects always need to be available even if they do not exist in any of the languages
that are configured for a sitaccess. For example, the system must be able to fetch user objects
no matter which siteaccess is used. Because of this, a new flag called ”always available” has
been introduced at the object level. It makes it possible to individually control the availability
of the different objects. When an object doesn’t exist in any of the site/prioritized languages
and it is always available, the system will use the object’s initial/main language to display its
contents.

The default object availability can be controlled on the class level. By default this setting is
enabled for the "Folder”, "User”, "User group”, "Image”, "File” etc. classes, so that objects of
these classes will be marked as “always available” when created. Changing the default setting
at the class level will not affect the existing objects because it simply dictates the initial value

for the "always available” flag which is stored for each object.

Example

Let’s say that one of your folders only exists in Norwegian, is marked as always available and
contains several articles (the articles are in English, French and Norwegian and none of them

4.3 Multi-language 232

are marked as always available). If you specify English and French as site languages for your
public siteaccess, this folder will still be displayed since it’s always available. Your visitors will
thus be able to view the articles that are in it. If the folder is not marked as always available
then it will not be displayed and thus your visitors will not be able to read the articles located
under it until you translate the folder itself into English or French.

4.3.1 Multi-language / Configuring your site locale 233

4.3.1 Configuring your site locale

eZ Publish uses the "eng-GB” locale by default. This behavior is determined by the “Locale”
INI setting located in the ”"[RegionalSettings]” block of the ”settings/site.ini” configuration
file. If you wish to use another locale for your site then you have to override this setting.
Please note that the specified locale will be used as the default value for the ”110n (page
1145)” operator unless you explicitly specify the desired locale when using this operator in
your templates. The following examples demonstrate how you can set the site locale.

Example 1

Let’s say that you need to use "nor-NO” as system locale for all your siteaccesses. The follow-
ing instructions reveal how this can be done.

1. Open the ”site.ini.append.php” configuration file located in the ”settings/override” di-
rectory and edit it (if the file does not exist, create it).

2. Add the following lines under the ”[RegionalSettings]” block:

Locale=nor-NO

3. Clear the caches.

The system will start to use the locale settings specified in the ”share/locale/nor-NO.ini” file
for all your siteaccesses.

Example 2

Let’s say that you need to use the "nor-NO” locale for one of your siteaccesses. To do this, edit
the ”site.ini.append.php” file located in the ”settings/siteaccess/example/” directory (where
“example” is the name of your siteaccess) as described in the previous example and make sure
that no locale is specified in the ”settings/override/site.ini.append.php” file. After clearing the
caches, the "example” siteaccess will start to use the "nor-NO” locale. However, this may not
result in the translation of all parts of the interface for this siteaccess (like "Login” and ”Sign
up” links/buttons etc.) into Norwegian. To do this, you should add the following line under
the ”[RegionalSettings]” block of the siteaccess ”site.ini.append.php” file:

TextTranslation=enabled

This will instruct the system that the strings marked with ”i18n (page 1143)” in the tem-
plates should be translated according to the current locale. This means that if you set the
“nor-NO” locale for your admin siteaccess and enable the "TextTranslation (page 2365)” set-
ting then everything in the administration interface will be translated into Norwegian. (The
"TextTranslation” configuration setting is disabled by default.)

You can also specify different locales for the remaining siteaccesses in the same way, otherwise
the default "eng-GB” locale will be used for them.

4.3.1 Multi-language / Configuring your site locale 234

Adding missing locales

eZ Publish provides many default locale settings where each locale is described in an INI
file named by the locale identifier and placed in the ”share/locale” directory. ”To con-
tribute new locales and/or translations to eZ Publish, visit the Community Translation project
page here: http://projects.ez.no/ezpublish translation, log-in, navigate to the team page (
http://projects.ez.no/ezpublish translation/team/members) and request membership. You
will be promptly able to contribute new translations and locale to eZ Publish ! ”. The follow-
ing example demonstrates how to add a missing locale.

Example

Let’s say that you need to use the ”ell-GR” locale on your site. To do this,
download Greek translation for eZ Publish from the eZ Publish translation pages
http://projects.ez.no/ezpublish translation (you have to be a member as described in "Adding
missing locales above”) and unpack it into a temporary location. You should see there a sub-
directory called ”share” which contains the locale configuration file (share/locale/ell-GR.ini)
and the translation file for eZ Publish (share/translations/ell-GR/translation.ts). In addition,
the downloaded package may contain a flag icon (share/icons/flags/ell-GR.gif) and/or trans-
lation file(s) for some extensions located in the ”extension” sub-directory.

Please note that the "translation.ts” file contains eZ Publish specific strings translated into
Greek language (the strings that are used in the templates and PHP code). If the "TextTrans-
lation” setting is enabled, the strings from this file will be used for translating different parts
of the interface, system messages, warnings etc.

If you copy the “share” sub-directory to the root directory of your eZ Publish installation,
set the ”ell-GR” locale (as described in the previous two examples) and clear the caches, the
system will start to use Greek locale.

Custom locales

In addition to the default locale settings that come with eZ Publish, it is possible to create
custom locales. The following examples demonstrate how this can be done.

Example 1

Let’s say that you wish to use Icelandic locale on your site. You can create a custom locale
configuration file for this based on the "eng-GB” locale settings. To do this, do the following:

1. Go to the ”share/locale” directory and copy the "eng-GB.ini” configuration file to a new
file called "ice-IS.ini”.

2. Open this file and edit the locale settings.

3. Set your site locale to "ice-1S”.

http://projects.ez.no/ezpublish_translation
http://projects.ez.no/ezpublish_translation/team/members
http://projects.ez.no/ezpublish_translation

4.3.1 Multi-language / Configuring your site locale 235

Example 2

Let’s say that you wish to modify the Norwegian locale. The original locale file should not be
changed because it will be overwritten next time you upgrade eZ Publish. Instead, you should
create a custom locale file based on the original "nor-NO” locale settings. The following text
reveals how this can be done.

1. Go to the ”share/locale” directory and copy the "nor-NO.ini” configuration file to a new
file called "nor-NO@custom.ini”.

2. Open the newly copied file and edit the locale settings.
3. Make sure that your siteaccess uses the "nor-NO@custom” locale.

4. Clear the caches.

Standard for naming eZ locales

You must decide the locale code of your language. eZ Publish uses locale codes on the form
aaa-AA, where the 3 first lowercase letters describe the language, while the last two uppercase
letter describe the country in which the language is spoken. For instance, English as it is
spoken in Great Britain would be eng-GB, while US English is eng-US.

Countries are specified by the ISO 3166 Country Code: http://www.iso.ch/iso/en/prods-
services/iso3166ma/index.html

Language is specified by the ISO 639-2 Language Code:
http://www.loc.gov/standards/iso639-2/php/code list.php

You can also create a variation of a locale, you will for instance find two variations of nor-NO,
nor-NO@intl and nor-NO@spraakraad, that are slight modifications of the original.

This list shows the current ini-files with eZ locales in use in eZ Publish installations:

http://www.iso.ch/iso/en/prods-services/iso3166ma/index.html
http://www.iso.ch/iso/en/prods-services/iso3166ma/index.html
http://www.loc.gov/standards/iso639-2/php/code_list.php

4.3.1 Multi-language / Configuring your site locale

236

Locales ini file

Language (Country)

cat-ES.ini Catalan (Spain)
chi-CN.ini Chinese (China)
chi-HK.ini Chinese (Hong Kong)
chi-TW.ini Chinese (Taiwan)
cro-HR.ini Croatian (Croatia)
cze-CZ.ini Czech (Czech Republic)
dan-DK.ini Danish (Denmark)
dut-NL.ini Dutch (Netherlands)
ell-GR.ini Greek (Greece)
eng-AU.ini English (Australia)
eng-CA.ini English (Canada)
eng-GB.ini English (Great Britain)
eng-GB@euro.ini English (Euro support)
eng-NZ.ini English (New Zealand)
eng-US.ini English (USA)
esl-ES.ini Spanish (Spain)
esl-MX.ini Spanish (Mexico)
fin-FI.ini Finnish (Finland)
fre-BE.ini French (Belgium)
fre-CA.ini French (Canada)
fre-FR.ini French (France)

ger-DE.ini Germany

German (Germany)

ger-DE@euro.ini

German (Euro support)

heb-IL.ini Hebrew (Israel)
hin-IN.ini Hindi (India)
hun-HU.ini Hungarian (Hungary)
ind-ID.ini Indonesian (Indonesia)
ita-IT.ini Italy Italian (italy)
jpn-JP.ini Japanese (Japan)

jpn-JP@international.ini

Japanese (Kanji)

kor-KR.ini

Korean (South Korea)

nno-NO.ini

Norwegian - Nynorsk (Norway)

nor-NO.ini

Norwegian - Bokm¥l (Norway)

nor-NO@intl.ini Norway

Norwegian (intl)

nor-NO@spraakraad.ini

Norwegian (Standard set by Spr¥kr¥det)

pol-PL.ini

Polish (Poland)

por-BR.ini Portugese (Brazil)
por-MZ.ini Portugese (Mozambique)
por-PT.ini Portugese (Portugal)
por-PT@euro.ini Portugese (Euro support)
rus-RU.ini Russian (Russia)
ser-SR.ini Serbian (Srpski)
slk-SK.ini Slovak (Slovakia)
srp-RS.ini Serbian ()

swe-SE.ini Swedish (Sweden)
tur-TR.ini Turkish (Turkey)
ukr-UA.ini Ukrainian (Ukraine)

4.3.2 Multi-language / Configuring the site languages 237

4.3.2 Configuring the site languages

No site languages are specified by default (i.e. after downloading and unpacking the eZ
publish distribution). During the installation process, the setup wizard (page 54) allows the
user to choose the languages that should be used on the site which is being created. The list
of available languages displayed at this step is built using the INI files located in the “share/
locale” directory. Use the radio buttons to choose the default language (required), and the
checkboxes to choose the additional languages (optional).

Please note that choosing the default language at this step will affect both default language
and system locale. Please note that one of the radio buttons will be pre-selected i.e. the
default language will be specified according to the language settings of your browser . How-
ever, you can choose another language instead. If you select for example "German”, then both
locale and default language will be set to ”ger-DE” and your administration interface will be
translated into German (in addition, the "TextTranslation” setting will be enabled).

All the selected languages will be added to the system as translation languages and recorded
as site languages for both public and admin siteaccesses. The default language will be
recorded as the most prioritized language. You will be able to use any of these languages
for creating and translating your content after the setup wizard is finished. It is also possi-
ble to add new translation languages (page 242) using the administration interface and to
change the site languages configuration by editing your configuration settings.

Displaying untranslated content

Since it may be useful to display all translation languages, an additional configuration setting
called "ShowUntranslatedObjects” has been added. It can be set to either “enabled” or "dis-
abled”. If this setting is enabled, the system will still use the language priorities determined
by the ”SiteLanguageList[]” array, but it will not filter away languages that are not on the
list. In other words, all objects will be displayed regardless of which language they exist in
- and objects that exist in a language specified in the priority list will be displayed using the
prioritized language.

The "ShowUntranslatedObjects” setting is disabled by default. However, the setup wizard
usually enables it for the admin siteaccess. This allows the site administrator to create and
edit objects in any of the translation languages even if some of these languages are not listed
as site languages.

Example

Let’s say that you have selected British English as default language, French and Norwegian as
additional languages (look at the following screenshot).

(see figure 4.1)

In this case, you will have the following settings for locale, default language and site lan-
guages after the setup wizard is finished:

[RegionalSettings]
Locale=eng-GB
ContentObjectLocale=eng-GB

4.3.2 Multi-language / Configuring the site languages

238

File Edit View PBookmarks Tools Help
o e 2w @ # (& nipnestin.ezne
MEjeZ publish
Setup

Language support

Use the radio buttons to choose the default language, and the checkboxes to choose
additional languages. You will be able to use any of the selected languages for
translating your content The default language will determine the locale setings and
will be used as the most prioritized language for your site,

Default/Additional:
) || Catalan
) [] Chinese
| Croatian (Hrvatski)
| || Czach
! || Danish
|| Dutch
| English (Australia)
English (Canada)
English (United Kingdom)
English (American)
Castillan (Spain)
Castillan
|| Finnish
. French (Canada)

French (France)
. German
Hebrew
Hindi (India)
Hungarian
Italian

s Japanese
) || Nonweglan (Mynorsk)
) & Norweglan (Bokmal)
1 || Palish
_ || Poruguese (Brasil)
) __ Portuguese {(Mozambique)
O | Portuguese (Portugal)
) || Russian
) || Slovak
) || Swedish
|| Turkish

|| Ukrainian

Settings:
~/Enable Unicode setup

<Blck| Hm>|

The selected languages are used
to determine character sets, date /
number formats, etc.

These and other additional
languages can also be installed
later.

For more information about
language customization, please
refer to the ’

Summary

System: OK

Image system: ImageMagick
Mail: sendmail
Database: MySaL
Language: eng-GB

Site:

s

Figure 4.1: The language selection step in the setup wizard.

SiteLanguageList []=eng-GB
SiteLanguageList []=fre-FR
SiteLanguageList [J=nor-NO

This means that the site locale is set to ”"eng-GB”, the default language is English, the
most prioritized language is English, the second prioritized language is French and the
third prioritized language is Norwegian. The setup wizard will put these settings into the
”site.ini.append.php” files for both public and admin siteaccesses. The "TextTranslation (page

2365)” setting will be disabled for both siteaccesses because the "eng-GB” locale is used.

Any of these three languages can be used for creating and translating your content. You can
change the site language configuration later by editing the ”site.ini.append.php” file for the

desired siteaccess.

The setup wizard will add one more line in the "site.ini.append.php” file for the admin siteac-

Cess:

4.3.2 Multi-language / Configuring the site languages 239

ShowUntranslatedObjects=enabled

This will tell the system to make all the translation languages available when working with
content objects in the administration interface.

You can add new translation languages using the admin interface. Let’s go to ”"Setup - Lan-
guages” and add German. This language will not be displayed on your site (public siteaccess)
because it is not included in the list of site languages (i.e. not specified in the ”SiteLanguage-
List[]” array). However, after clearing the caches German will be displayed as the last item in
the drop-down list of available languages for object creation in the administration interface
(look at the next screenshot) because the "ShowUntranslatedObjects” setting is enabled for
the admin siteaccess.

(see figure 4.2)

Aricle x| EEnglish (United Kingdorm) : | m
English {United Kingdorm)
French (France)
Morwegian (Bokmal)

Figure 4.2: The "Create here” interface.

Changing the language priorities

The ”SiteLanguageList[]” setting specified in the siteaccess ”site.ini.append.php” file contains
the prioritized list of site languages where items appearing at the top get higher priority
than the others. The system will try to display content in the most prioritized language first.
If an object is not translated to this language then the second prioritized language will be
displayed. If an object does not exist in this language then the third prioritized language will
be used and so on. If an object does not exist in any of the site languages, it will not be shown
unless it is always available or if you configure the siteaccess to display untranslated content.

To change the site language priorities, open the configuration file, edit it and re-arrange the
elements of this array in the desired way.

Example

Let’s say that the following settings are specified in the ”site.ini.append.php” file for your
public siteaccess:

[RegionalSettings]
SiteLanguageList[]
SiteLanguagelList []=eng-GB
SiteLanguagelist []=fre-FR
SitelLanguagelList []1=ger-DE
SiteLanguageList []J=nor-NO

If an article exists in French and Norwegian languages, the system will follow the prioritized
list of site languages and display the article in French which is the second prioritized language.

4.3.2 Multi-language / Configuring the site languages 240

This behavior will not change if you translate this article into German (the third prioritized
language). However, if you translate the article into English (which is the most prioritized
language), then it will be displayed in English.

If you move the line ”SiteLanguageList[] =nor-NO” to the top of the list, then Norwegian will
become the most prioritized language. This will instruct the system to display content in
Norwegian and use other site languages only when a Norwegian translation is not available.

Using several public siteaccesses

In the previous example only one public siteaccess was used. A multi-language site typi-
cally uses several public siteaccesses. If your site content exists in for example English and
French then it is recommended to have two public siteaccesses with the following language
configuration:

Siteaccess ”gb” Siteaccess ”fr”
[RegionalSettings]
[RegionalSettings] SitelLanguageList[]
SiteLanguageList[] SiteLanguagelList []=fre-FR
SiteLanguageList[]=eng-GB SiteLanguageList []=eng-GB

If an article exists only in English, it will be displayed to the visitors of both siteaccesses
(because English is the only site language for the ”gb” siteaccess and the second prioritized
language for the "fr” siteaccess). If you translate this article into French, it will be shown in
French when viewing the ”fr” siteaccess (since French is the most prioritized language for this
siteaccess). If an article exists only in French, it will be available for the visitors of the "fr”
siteaccess but it will not show up in the ”gb” siteaccess.

Now, let’s say that you wish to start using for example Norwegian language on your site.
In this case, you will probably add Norwegian as a new translation language, create a new
siteaccess called "no” and specify the following settings in the ”site.ini.append.php” file of the
newly created siteaccess:

[RegionalSettings]
SiteLanguagelList[]
SiteLanguageList []=nor-NO

This will tell the system to use Norwegian as the only site language for this siteaccess. In
other words, if an article does not exist in Norwegian, it will not be displayed.

Of course, it is possible to add the following line to these settings:

SiteLanguageList []=eng-GB

In this case Norwegian will be the most prioritized language for the "no” siteaccess and En-
glish will be the second prioritized one (look at the next table).

Siteaccess ”gb” Siteaccess ”fr” Siteaccess "no”
The most priori- | eng-GB fre-FR nor-NO

tized language
The second priori- | - eng-GB eng-GB

4.3.2 Multi-language / Configuring the site languages 241

tized language
The third priori- | - - -
tized language

Articles that exist only in English will be displayed in English to the visitors of all three
siteaccesses. If an article exists only in Norwegian, it will be shown only on the "no” siteaccess.

Let’s create a new article called "Lundi” (Monday) in French. This article will be displayed
to the visitors of the ”fr” siteaccess but not to the visitors of the ”gb” and "no” siteaccesses
(because French is not listed as site language for these siteaccesses). If you translate this
article into Norwegian then it will become available as "Mandag” (Monday) when viewing
the "no” siteaccess but still invisible for the users of the ”gb” siteaccess. If you add English
translation for this article, it will become available as "Monday” for the visitors of the ”gb”
siteaccess. However, nothing will change for the ”fr” and "no” siteaccesses because English is
their second prioritized language.

4.3.3 Multi-language / Managing the translation languages 242

4.3.3 Managing the translation languages

The administration interface allows you to manage the translation languages for your site.
This can be done by manipulating the global translation list. To access the list of translation
languages, click the ”Setup” tab in the administration interface and select the "Languages”
link on the left. (This interface can also be accessed by requesting ”/content/translations” in
the URL.) The following screenshot shows how this list looks like.

(see figure 4.3)

Available languages for translation of content [3]

%4 Language Country Locale Translations
| English (United Kingdom) United Kingdom eng-GB 28
I~ [French (France) France fre-FR 0
I Norwegian (Bokmal) Norway nor-NO 0
| Remove selecte i | Add 1anguag J

Figure 4.3: The list of translation languages.

The last column of the list contains information about the number of translations i.e. how
many content objects are translated into each language. The screenshot shows a situation
when all the objects exist in English but they are not translated to French and Norwegian. If
you click on a language name, the system will display information about this language and
its locale settings.

The next subsections explain how the translation languages can be added and/or removed
using this interface.

Adding a new language

You can add a new translation language by clicking the ”Add language” button and selecting
the desired language from the drop-down list called "Translation” (look at the next screen-
shot). Please note that the contents of this list depends on the available locales represented
by the INI files in the ”share/locale” directory. If you wish to use a language which is not
available here then you need to add the missing locale first.

(see figure 4.4)

Click "OK” to save your changes. After clearing the caches, you will be able to use this
language for your content objects.

Removing a language

You can only remove a language if there are no content objects using it (when the "Transla-
tions” column contains ”0” for a language).

To remove one or more languages from the system, select the languages that you wish to
remove (use the checkboxes located in the first column) and click the "Remove selected”
button.

4.3.3 Multi-language / Managing the translation languages 243

Z2 New translation for content

.

Translation:
| German |

Name of custom translation:

Locale for custom translation:

Figure 4.4: Adding a new translation language.

4.3.4 Multi-language / Translatable class attributes 244

4.3.4 Translatable class attributes

In eZ Publish 3.9.0 and later versions, it is possible to translate the names of the attributes
when editing the different classes. This allows the system to display the attribute labels in
the correct language when users are working with (both editing or viewing) the different
translations. For example, if a class is being used to store information about cars in both
English and Norwegian, it is a good idea to translate the names of the class attributes so that
the ”Color” attribute of the cars would appear as "Color” or "Farge” depending on whether
the object is being edited in English or Norwegian.

A class can be created using any of the languages that have been added either using the setup
wizard or the "Languages” part of the ”Setup” tab in the administration interface. When a
class is created, it’s main language will be set to the language that was used during creation.
The class name and the names of the class attributes that are in the main language can not be
removed from the class. However, if the class exists in several languages, the main language
can be changed and thus the class name and the names of the class attributes that are not in
the main language can be removed. Changing the main language and removing languages/
translations from a class can be done from within the "Translations” window in the class view
interface.

Creating classes in different languages

The administration interface allows you to create content classes from scratch using any of
the translation languages. The following text reveals how this can be done.

1. Access the “Setup” tab in the administration interface, click ”Classes” on the left
and select the class group that you wish to add a new class to. You should see the list
of classes assigned to this group.

2. Use the drop-down list of languages located in the bottom of the “Classes inside
<group_name>" window to choose the desired language for the class that you wish to
create. Click the "New class” button (see the following screenshot).

(see figure 4.5)

 If the desired language is not listed in the drop-down list, make sure it exists in
the global translation list. You can add new languages to this list as described in the
”Managing the translation languages (page 242)” section. Note that the newly added
languages will become available after the caches have been cleared.

3. You will be taken to the class edit interface, where the language that the class
is being edited in will be shown in the top right corner. Specify name, identifier, object
name pattern and container flag for the newly created class and add the desired at-
tributes using the drop-down list located in the bottom of the class edit interface. After
adding the attributes, click "OK” to save the class.

Translating classes to different languages

The administration interface allows you to translate the names of content classes and their
attributes to any of the translation languages. The following text reveals how this can be
done.

4.3.4 Multi-language / Translatable class attributes 245

@ Content [Class group]

Last modified: 06/10/2002 7:35 pm, Administrator User

ID:

1

Name:

Content

Jeait fremove |

EX Classes inside <Content> [5]

Name ID Identifier Modifier Modified Objects

[[E] Aricle 2 article Administrator 20/04/2004 0
User 12:56 pm

O [Jcar 16 car Administrator 11/05/2007 0
User 1:00 pm

[| 7 Comment 13 comment Administrator 20/04/2004 0
User 12:59 pm

[] 3 Eolder 1 folder ~ Administrator 20/04/2004 7
User 12:54 pm

[[#) Link 11 link Administrator 20/04/2004 0
User 12:57 pm

Removeselectad l English (United Kingdom jd
English (United Kingdom)

Morwegian (Eokmal)
Russian

Figure 4.5: Choose a language for a new content class.

1. In the administration interface, locate the class that you wish to edit and click
on the name of the class. You will be taken to the class view interface.

2. Select the "Another language” item from the drop-down list and click the "Edit”
button as shown in the following screenshot.

(see figure 4.6)

 The system will display the language selection interface for content classes (see
the following screenshot).

(see figure 4.7)

Use the language selection radio buttons to select the language that you wish to trans-
late the names of the class attributes (in the screenshot above, Norwegian is selected).
It is also possible to choose which existing language the newly translated names should
be based on. You can select one of the existing languages or "None”. When a language is
chosen instead of "None”, the system will copy the existing class attribute names from
the selected language and allow them to be modified/translated (otherwise, you will
have to type in everything from scratch into empty fields).

3. After clicking the “Edit” button, the system will bring up the class edit interface
where you should specify the class name and the names of the class attributes in the
selected language. When finished, click "OK” to save your changes.

Editing classes in different languages

You can edit a content class in any of the languages that it exists in. The following text reveals
how this can be done.

4.3.4 Multi-language / Translatable class attributes 246

' Documentation page [Class]

14052007 2:24 pm, English {(United Kingdom
or Usar

Name:
Documentation page

Identifler:
documentation_page

Object name pattern:
<title>

Container:
Yes

Default object availability:
Available

Default sorting of children:
Priority / Ascending

Object count:

0

Attributes

1. Title [Text line] (id:184)

Name: Identifier: Flags:

Title title: Is required
Default value: Max string length: Is searchable
Empty 0 characters

Does not collect information

Translation is enabled

2. Body [XML block] (id:185)

Name: Identifier: Flags:

Body body Is required
Preferred number of rows: |5 searchable
3

Does not collect information

Translation is enabled

Figure 4.6: The main window of the class view interface.

New languages
Select the language you want to add:
(# Norwegian (Bokmal)
() Russian
Select the language the added translation will be based on:
(® None
1 English {United Kingdom)

Figure 4.7: The language selection interface for class attribute names.

Using the ”Edit” button

1. In the administration interface, locate the class that you wish to edit and click
on the name of the class. You will be taken to the class view interface.

4.3.4 Multi-language / Translatable class attributes 247

2. Select the desired language from the drop-down list and click the "Edit” button.
The system will bring up the class edit interface where you can change the class name
and the names of the class attributes in the selected language. When finished, click
”OK” to save your changes.

Using the translations window

1. In the administration interface, locate the class that you wish to edit and click
on the name of the class. You will be taken to the class view interface.

2. The horizontally aligned switches in the upper area control the visibility of the
different windows. Click on the ”Translation” switch to enable the translations window
(see the following screenshot).

(see figure 4.8)
l Content structure] Media library l User accounts I Webshop l Design -l

> Classes / Content / Documentation page

Cache management ' Documentation page [Class]
Classes

-

-

e Collected information Last m Administrator User
« Extensions Name:

@ Global seftings Documentation page

e Ini settings Identifier:

@ Languages documentation_page

Figure 4.8: Enabling the translations window.

 A bluish background indicates that the switch is on and thus the "Translations”
window will be active/visible. The following screenshot shows how this window looks
like for a class that exists in three languages.

(see figure 4.9)

Existing languages

Language Locale Main
English {(United Kingdom) eng-GB .
O Morwegian (Bokmal) nor-NO
[| B Russian rus-RU
et main |

Figure 4.9: Translations window.

 Locate the language that you wish to edit and click on the language’s corre-
sponding edit icon (on the right hand side). The system will bring up the class edit
interface.

4.3.4 Multi-language / Translatable class attributes 248

Changing the main language

If a class exists in several languages then you can choose which of them will be the main
language.

1. In the administration interface, locate the class that you wish to edit and click
on the name of the class. You will be taken to the class view interface.

2. Enable the translations window, select the desired language using the radio but-
tons and click the ”Set main” button.

Removing languages

It is possible to remove languages/translations from a class (except the main language). This
can be done from within the "Translations” window in the class view interface. When either
one or several languages are selected using the check-boxes (on the left hand side), the "Re-
move selected” button can be used to carry out the actual removal of the selected translations.

4.3.5 Multi-language / Translatable country names 249

4.3.5 Translatable country names

From 3.9, it is possible to translate the names of countries to different languages. For example,
you can instruct the system to use “Frankrike” instead of "France” and ”"Norge” instead of
”Norway” whenever the list of countries is displayed on a siteaccess where Norwegian locale
is used. The following example demonstrates how this can be done.

Example

If you wish to replace the English country names of France and Norway with the Norwegian
ones on a siteaccess that uses the Norwegian locale, you can do the following.

1. Go to the ”share/locale” directory and copy the "nor-NO.ini” configuration file to a new
file called "nor-NO@custom.ini”.

2. Add the following lines under the ”[RegionalSettings]” block:

[CountryNames]
Countries[]
Countries[FR]=Frankrike
Countries [NO]=Norge

3. Set your site locale to "nor-NO@custom” (refer to the ”"Configuring your site locale
(page 233)” documentation page for more information about setting the site locale).

After clearing the caches, the system will use Norwegian country names for France and Nor-
way whenever the list of countries is displayed. The following screenshot shows how a trans-
lated country name will appear in the "Default selection” drop-down list when an attribute of
the "ezcountry (page 499)” datatype is being edited.

(see figure 4.10)

4.3.5 Multi-language / Translatable country names 250

[~ 9. Country [Country] (id:188)

Name:
IC ountry

Identifier:

Icountryr
[~ Required [~ Searchable [Information collector [Disable translation
[~ Multiple choice

Default selection:

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

Northern Mariana Islands

Norge |
Oman

Other

Pakistan

Palau

Palestinian Territiry, Occupied ‘
Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn -

Figure 4.10: List of countries containing translated country names.

4.3.6 Multi-language / Multilingual objects 251

4.3.6 Multilingual objects

The following text describes how you can create new multilingual objects, make an object
always available, set the initial/main language for an object and so on.

Creating new objects

The administration interface allows you to create content objects in any of the translation
languages. Use the drop-down list of languages located in the ”Create here” interface to
choose the desired initial/main language for the object that you wish to create and click the
”Create here” button (look at the next screenshot).

(see figure 4.11)

Article ~| ¢English {United Kingdom) : | m
Engligh {United Kingdarm)
French (France)

Morwegian (Bokmal)

Figure 4.11: The "Create here” interface.

If the desired language is not listed in the drop-down box, do the following:

1. Go to the list of translation languages and add the desired language if it is not listed
there as described in the "Managing the translation languages (page 242)” section.

2. Make sure that the ”site.ini.append.php” file of your admin siteaccess contains the fol- 4
lowing line under the "[RegionalSettings]” block:

ShowUntranslatedObjects=enabled
The language will become available after clearing the caches.

Changing the initial/main language

If an object exists in several languages then you can choose which of them will be the initial/
main language. Select the desired translation in the translations window using the radio
buttons and click the ”Set main” button.

Changing the object availability

To make an object always available, select the "Use the main language if there is no prioritized
translation” checkbox located in the translations window of the object view interface and click
the "Update” button.

4.3.6 Multi-language / Multilingual objects 252

Default object availability for a class

It is possible to set the default object availability on the class level. By default this setting is
enabled for the “Folder”, "User”, "User group”, "Image”, "File” etc. classes, so that the new
objects of these classes will be marked as ”always available” when created. Note that this
can be reconfigured for each individual object regardless of the class setting. The following
example demonstrates how this can be done.

Example

Let’s say that you are going to create a set of articles in English that should be displayed
on any siteaccess no matter which site languages are specified for these siteaccesses. You can
enable the default object availability setting for your ”Article” class so that each newly created
article will become ”always available” by default. The following instructions reveal how to do
this.

1. Access the ”Setup” tab in the administration interface, click ”Classes” on the left and
select the "Content” class group. You should see the list of classes assigned to this group
as shown in the following screenshot.

(see figure 4.12)

E} Classes inside <Content> [6] I

Name D Identifier Modifier Modified Objects

- [CAticle 2 aticle Admin Admin 20/04/2004 12:56 pm 1
[~ /7 Comment 13 comment AdminAdmin 20/04/2004 12:59 pm 0
[~ (LgFEolder 1 folder Admin Admin 20/04/2004 12:54 pm 10
I @% 11 link Admin Admin 20/04/2004 12:57 pm 0
I @F’roduct 16 product Admin Admin 17/07/2006 12:30 pm 2
[~ /7 Review 17 review Admin Admin 17/07/2006 12:30 pm 1

Figure 4.12: The list of classes.

Find the ”Article” class there and click on the edit icon located in the same line of the
list. You will be taken to the class edit interface.

2. Select the "Default object availability” checkbox as shown in the screenshot below and
click the ”OK” button to save your changes.
(see figure 4.13)

Please note that the changes will not affect any of the existing articles. Only new articles will
be affected.

4.3.6 Multi-language / Multilingual objects 253

E Edit <Article> [Class]

Last modified: 1807/2006 12:27 pm, Admin Admin

Name:
|Article |

Identifier:
|ar1jc|e |

Object name pattern:
|<short_titletitle> |

Container:

M

Default object availability:

M

Name:
|Title |

Identifier:
[1itte |

Figure 4.13: The class edit interface.

4.3.7 Multi-language / Working with translations 254

4.3.7 Working with translations

You can use the translations window to view the languages that the object exists in. The
following text reveals how you can create, edit and remove the object translations.

Editing a translation

All content editing is done through the object edit interface. This interface will automatically
be displayed whenever you're editing existing or creating new objects. If an object exists in
several languages then you can choose which translation to edit. The following text reveals
how you can edit a translation using different approaches.

Using the translations window

1. Use the administration interface to navigate to the object that you wish to edit. In other
words, make sure that the object is being displayed.

2. Enable the translations window and locate the language that you wish to edit. Click on
the language’s corresponding edit icon (on the right hand side). The system will bring
up the edit interface.

Using the ”Sub items” window

1. Use the administration interface to navigate to the node/object which contains the one
that you wish to edit. In other words, make sure that the parent node is being displayed.

2. Look at the ”Sub items” window and locate the node/object that you wish to edit. Click
on the node’s corresponding edit icon (on the right hand side). You will be taken to the
language selection interface which is described below.

3. Use the radio buttons located in the ”Existing languages” frame to select the language
that you wish to edit and click the "Edit” button. The system will bring up the edit
interface.

The language selection interface

The language selection interface (full or reduced) appears when you have to choose which
translation you wish to edit or create. The following screenshot shows the language selection
interface for a folder that exists in English and French languages.

(see figure 4.14)

As you can see from the screenshot above, the language selection radio buttons are divided
into two groups. The ”Existing languages” group contains the languages that are already
used by the object. This list makes it possible to select an existing translation for editing. The
"New languages” group contains a list of the translation languages that are not used by the
object. The latter makes it possible to translate the contents of the object into a language that
it does not exist in yet. When adding a new translation, it is possible to choose which existing
translation it should be based on. You can select one of the existing languages or "None”.

4.3.7 Multi-language / Working with translations 255

Edit <Multiprice products>

Existing languages

Select the language you want to edit:
_ English (United Kingdom)
French (France)

New languages
Select the language you want to add:
_ Norwegian (Bokmal)
) German
Select the language the added translation will be based on:

None
_ English (United Kingdom)
_ French (France)

[Edit | Gance |

Figure 4.14: The language selection interface.

When a language is chosen instead of "None”, the main part of the edit page will contain
translation interface instead of the standard edit interface.

Using the tree menu and the context menu

1. Use the tree menu on the left to locate the object that you wish to edit.
2. Click on the object’s icon in order to bring up the context menu.

3. Access the "Edit in” submenu and select the language that you wish to edit as shown in
the following screenshot.

(see figure 4.15)

Content structure | | fiL___F="=v___I]

|LJ ez publish
D Multinrice nroduects k el [FOIder]

C Multiprice prod...

C View

Edit in

iodified: 17/07/2006 12:30 pm, A

3
English (United Kingdom})

4
Copy French (France)

@ Tr Copy Subtree
Maove
Sm: Remove
Advanced

Ancther language

» ow children:

Expand i

Collapse

Add to my bookmarks
Add to my notifications

Figure 4.15: The context menu.

The screenshot above shows the content structure pop-up menu for a folder that exists
in English and French. After selecting a language, the system will display the edit
interface.

4.3.7 Multi-language / Working with translations 256

Using the ”Edit” button

1. Use the administration interface to navigate to the node (page) that you wish to edit.
In other words, make sure that the node is being displayed.

2. Use the drop-down list of languages located in the preview window to select the lan-
guage that you wish to edit and click the "Edit” button (look at the next screenshot).
(see figure 4.16)

‘ Multiprice products [Folder]

Last modified: 18/07/2006 2:35 pm English (United Kingdom) B
Admin Admin

Multiprice products

This is some example data for products with several prices in
different currencies in eZ publish.

Show children:
Yes

English (United Kingdom) M|IEdit J Move Remove |
English {United Kingdom)

French (France)
Ancther language

Figure 4.16: Selecting the language for editing.

The system will bring up the edit interface.

Using the bookmarks

1. Make sure that your bookmarks are being displayed (use the ”+” sign to open the
window).

2. Locate the object that you wish to edit and click on its icon to bring up the context
menu.

3. Access the ”Edit in” submenu and select the language that you wish to edit. The system
will bring up the edit interface.

Editing multiple languages

It is possible to edit two or more translations/languages of the same object. Internally the
system actually edits two or more versions of the same object. A draft only contains object
attribute data for one language. When the draft is published, the system will copy all other
languages from the previously published version. The following screenshot shows how the
draft list interface looks like when the user is editing three translations of the same article
(this interface can be accessed by clicking the "My account” tab and selecting the "My drafts”
link on the left).

(see figure 4.17)

4.3.7 Multi-language / Working with translations 257

My drafts [3] ‘

10 [25 50

MName Type Section Language Modified
DM Article Standard [l French (France) 20/07/2006 11:19 am
D Monday Aricle Standard English (United Kingdom) 20/07/2006 11:15 am
D Mandag Aricle Standard MNorwegian (Bokmal) 19/07/2006 6:41 pm

| Remove selec J [Remove 2 J

Figure 4.17: The "My drafts” interface.

The translations of the same object can be created and edited separately and simultaneously
by multiple users (a user only edits one version and language at a time).

Adding a new translation

You can translate the objects into any of the translation languages using the administration
interface. The following text reveals how you can translate an object using different ap-
proaches.

Using the ”Sub items” window

1. Use the administration interface to navigate to the node/object which contains the one
that you wish to edit. In other words, make sure that the parent node is being displayed.

2. Look at the ”Sub items” window and locate the node/object that you wish to edit. Click
on the node’s corresponding edit icon (on the right hand side). You will be taken to
the language selection interface. Select the desired parameters in the "New languages”
frame and click the “Edit” button. The system will bring up the edit interface.

Using the tree menu and the context menu

1. Use the tree menu on the left to locate the object that you wish to edit.
2. Click on the object’s icon in order to bring up the context menu.

3. Access the ”Edit in” submenu and select the ”Another language” item. You will be taken
to the reduced language selection interface. It contains a list of languages in which the
object does not exist (look at the following screenshot) and a list of languages that the
new translation can be based on.

(see figure 4.18)

Select the language that you wish to add and optionally one of the existing languages to
be used as original text during translation. After the "Edit” button is clicked, the system
will bring up the edit interface.

4.3.7 Multi-language / Working with translations 258

Edit <Multiprice products>

New languages
Select the language you want to add:

« Norwegian (Bokmal)
German
Select the language the added translation will be based on:
* None
English (United Kingdom)
French (France)

JEait J Cancel |

Figure 4.18: The reduced language selection interface.

Using the ”Edit” button

1. Use the administration interface to navigate to the object that you wish to edit. In other
words, make sure that the object is being displayed.

2. Select the "Another language” item from the drop-down list of languages which is lo-
cated in the preview window and click the "Edit” button. The system will display the
reduced language selection interface (described above). Select the desired parameters
and click the ”Edit” button. The system will bring up the edit interface.

Using the bookmarks

1. Make sure that your bookmarks are being displayed (use the ”+” sign to open the
window).

2. Locate the object that you wish to edit and click on its icon to bring up the context
menu.

3. Access the ”Edit in” submenu and select the ”Another language” item. The system will
display the reduced language selection interface (described above). Select the desired
parameters and click the "Edit” button. The system will bring up the edit interface.

4.3.8 Multi-language / The bit-field algorithm 259

4.3.8 The bit-field algorithm

The following text reveals some technical details related to the bit-field algorithm that is used
for language filtering and prioritizing.

The system stores information about all the translation languages in the "ezcontent language”
database table. These languages are identified by powers of 2 i.e. their ID numbers are 2, 4, 8,
16, 32 etc. The value 1 (270) is used for marking the objects always available. When an object
is marked always available, it will be shown even though it does not exist in a language that
is specified using the prioritized language list (the ”SiteLanguageList” configuration array).

The ”always_available” field

The ”ezcontentclass” table in the database includes the ”always_available” field (0 by default)
which controls whether new instances (objects) of a class should be set to ”"always available”
or not. If this value is set to 1 for a class, then all newly created instances of that class will be
always available. Note that this can be changed on the object level later on. The class setting
only controls the initial value of the "always available” flag of the objects.

The ”language mask” field

When storing information about a content object in the ”ezcontentobject” database table, the
system uses a special bit-field called "language mask” to identify languages in which the last
published version of an object exist. This field contains the sum of the ID numbers of these
languages plus 1 if an object is always available. When a new object is created, the sum of
the initial language ID and the default "always_available” value (specified in the class) will be
recorded to the object’s “language mask” field.

The ”language mask” bit-field is updated every time an object’s language configuration
changes. This typically happens when a translation is added or removed to/from an object.

Example

Let’s say that you have two translation languages with the following ID numbers:

Language name ID
English (United Kingdom) 2
French (France) 4

This allows the following possible values of “language mask” for your content objects:

Language mask Bitmap Languages

2 00010 The object exists in English.

3 00011 The object exists in English
and is always available.

4 00100 The object exists in French.

5 00101 The object exists in French
and is always available.

6 00110 The object exists in English

4.3.8 Multi-language / The bit-field algorithm 260

and French.

7 00111 The object exists in English
and French and is always
available.

When storing information about an object’s version in the “ezcontentobject version” database
table, the “language mask” bit-field contains the sum of the ID numbers of the languages in
which a version exists plus 1.

The ”initial language id” field

The ”ezcontentobject” table in the database includes the "initial language id” field which is
used for storing the ID number of the object’s initial language.

When storing information about an object’s version in the ”ezcontentobject version” database
table, the system records the ID number of the language which the version was edited in to a
special bit-field called ”initial language id”.

The ”language id” field

When storing information about an object attribute in the “ezcontentobject attribute”
database table, the system uses the ”"language_code” field to store the language code of the
translation that the attribute belongs to (for example “eng-GB”). The "language_id” bit-field
represents the same information in terms of language ID numbers i.e. this field contains the
ID number of the translation language.

4.3.9 Multi-language / Language based permissions 261

4.3.9 Language based permissions

The ”create” and ”edit” functions of the ”content” module support limitation on the language
level. For example, it is possible to configure the system so that a group of users are allowed
to create and translate objects using English and Norwegian while another group of users are
only allowed to translate existing content into French. The "read” function does not support
limitation on the language level and thus all translations of an object can be viewed by users
who have read access to it.

Content/create

The ”language” limitation of the "create” function controls which languages that are allowed
to be used when objects are created. The following screenshot shows the edit interface for a
policy that only allows the creation of French articles within the standard section.

(see figure 4.19)

Edit <content/create> policy for <Writer> role

Module:
content

Function:
create

Function limitations

Class: Section: ParentClass: ParentDepth: Language:

Any = = Any =
Article 1 English {United Kingdom)

Comment Users Comment 2

Common ini settings Media Common ini settings 3 Morwegian (Bokmal)

Dynamic-WAT product Setup Dynamic-WAT product 4

File Design File 8

Folder Folder G

Image - - Image - T - -

Nodes [0]

The node list is empty.
Remove selected | Add nodes Il

Subtrees [0]
The subtree list is empty.

Remove selected | Addsub II'I"'IJ
o]

Figure 4.19: The policy edit interface.

Content/edit

The ”language” limitation of the ”edit” function controls which translations of objects that
can be edited. It also controls which translations that can be added to objects. The follow-
ing screenshot shows the edit interface of a policy that only allows editing French content
(articles) or adding a French translation to existing articles.

(see figure 4.20)

4.3.9 Multi-language / Language based permissions 262

Edit <content/edit> policy for <Translator> role

Module:
content
Function:
edit
Function limitations
Class: Section: Owner. Language:
Any = Any = Any =
Self English (United Kingdom)
Comment Users Selfor anonymous users per HTTP session
Common ini settings Media Norwegian (Bokmal)
Dynamic-VAT product Setup
File Design
Folder
Image - - -
Nodes [0]

The node listis empty.
Remove selected |

Subtrees [0]
The subtree listis empty.

Remove selected |

Figure 4.20: The policy edit interface.

Combined with the ”“content/read” function (which does not support any language limita-
tions), the policy used in the example above will provide a configuration that allows any
article to be translated from any language to French. The combination is shown in the fol-
lowing screenshot. Note that users who only do translation work do not need to have access
to the "create” function of the "content” module.

(see figure 4.21)

Name:
I'I'ranslator

Policies
Module Function Limitations

[~ content read Class{ Article) , Section(Standard)
[~ content edit Class(Article), Section(Standard), Language(French (France))

Figure 4.21: The role edit interface.

4

4.4 Multi-language support for URL aliases 263

4.4 Multi-language support for URL aliases

In eZ Publish 3.10, a new feature that makes it possible to use multilingual virtual URLs (also
known as nice URLs or URL aliases) has been introduced. This feature allows URL aliases to
exist in several translation languages.

Auto-generated aliases

From 3.10, the automated virtual URL generation mechanism allows URL aliases to exist in
several languages, depending on which languages the actual objects exist in. In other words,
the URL aliases for nodes are now created in accordance with the existing translations of
the objects encapsulated by the nodes. When a new translation is added to an object, the
system will automatically generate a new set of URL aliases (based on the translations) for
the node(s) that encapsulate that object.

A new field "URL alias name pattern” has been added to the class edit interface. It controls
how the virtual URLs of the nodes will be generated when the objects (instances of the classes)
are created.

It is not possible to create, edit or remove auto-generated aliases using the administration
interface. They are updated automatically when objects are changed. The only way to change
an auto-generated alias is to edit the object itself in the corresponding language.

URL history entries

When the name of an object is changed, the system will take care of changing the auto-
generated URL aliases for the associated nodes. In addition, an internal redirection will be
created, which will make sure that the old URL still works. In other words, instead of deleting
the old URL alias from the database, the system will convert it into a URL history entry. The
old virtual URL will continue to redirect until a new node is created that uses the same URL.
In this case, the old virtual URL will be deleted.

Note that the internal redirection mechanism is intentionally hidden from the user. You can-
not view or manage URL history entries using the administration interface.

Example

Let’s say that a folder called "Computers” contains an article called "Monitors”, which
can be accessed at “http://www.example.com/Computers/Monitors”. If you rename the
folder to "Hardware”, the new URLs for accessing the folder and the article will be "http:/
/www.example.com/Hardware” and “http://www.example.com/Hardware/Monitors”. If
someone tries to use one of the old URLs, the system will automatically redirect the user
to the corresponding new URL. If you then rename the article into "LCD”, the following three
URLs will redirect the user to "http://www.example.com/Hardware/LCD”:

* http://www.example.com/Computers/Monitors
* http://www.example.com/Computers/LCD

* http://www.example.com/Hardware/Monitors

4.4 Multi-language support for URL aliases 264

Manual/user-defined aliases

The following two types of virtual URLs can be managed using the administration interface
(page 269):

* Global URL aliases

* Node URL aliases
The list of global URL aliases contains all user-defined virtual URLs, except from those that
are created for destinations (system URLs) like ”content/view/full/node_id”, where “node_id”

is the ID number of a node. These are called node URL aliases and can be managed separately
for individual nodes.

While global aliases always start from the root of the site, an alias of a node can either start
from the parent node or from the root of the site. This is controlled by the "Relative to parent”
flag.

A node URL alias applies only to the specific node that it references; in other words, a user-
defined alias of a node does not apply to the URLs for the node’s children. Refer to the
example below for more information.

Example

Let’s say that a folder called "Norway” contains two articles that can be accessed using the
following URLs:

* http://www.example.com/norway/oslo

* http://www.example.com/norway/bergen

and you have created a new URL alias "Kingdom” for this folder. In this case, the "Norway”
folder will be accessible through any of the following URLs:

* http://www.example.com/norway

* http://www.example.com/kingdom
However, the following two URLs will bring up a "Module not found” error:

* http://www.example.com/kingdom/oslo

* http://www.example.com/kingdom/bergen

Redirection of URL aliases and wildcards

In 4.0.0, it is possible to choose whether an alias will work as a ”direct” or "forward” one
("direct” == the entered URL in the address bar of a browser stays the same, "forward” ==
the system will redirect to the original URL), but only for URL wildcards. This is controlled
by the "Redirecting URL” checkbox when creating URL wildcards.

4.4 Multi-language support for URL aliases 265

URL aliases also gained a new feature. You have now the possibility to choose if a URL alias
should be direct or re-direct . Previously aliases have always re-directed (HTTP 301). Versions
prior to 3.10 did not redirect URLs pointing to modules. With this new feature this behavior
is back.

Find an example of redirection of URL aliases in the screenshot below:
(see figure 4.22)

e

New URL alias:
File-TPS-Report

Destination (path to existing funtionality or resource):

Itps/report

Language

[English (United Kingdom) 1%

[l Include in other languages

™ Alias should redirect to its destination

With Alias should redirect to its destination checked eZ Publish will redirect to the
destination using a HTTP 301 response. Un-check it and the URL will stay the same —
no redirection will be performed.

Figure 4.22:

Use the ”Alias should redirect to its destination ” checkbox to redirect the alias.

Wildcard based URL forwarding

eZ Publish supports wildcard based URL forwarding. This means that you can create a URL
alias that contains one or more asterisks (*) and the system will automatically replace the
corresponding parts in URLs according to the destination URL specified. For example, you can
create a URL alias called "pictures/*/*” and specify "media/images/{1}/{2}” as a destination.
In this case, a URL like "http://www.example.com/pictures/home/photo/” will load "http:/
/www.example.com/media/images/home/photo/”. In other words, you will be able to use
"pictures” instead of "media/images” in the URLs when accessing content nodes that are
located two or more levels beneath the "media/images” node.

It is possible to choose whether an alias will work as a ”direct” or "forward” one. In the
example above, a “direct” alias means that when someone enters "http://www.example.com/
pictures/home/photo/” in the address bar of a browser, the entered address will stay the same
while the actual node will be displayed. If the alias is of the "forward” type, the system will
redirect to "http://www.example.com/media/images/home/photo/” instead.

Wildcard URL aliases can be managed using the administration interface.
Availability

An alias is only available for a siteaccess if the language of the alias matches one of the site
languages specified for this siteaccess. If a siteaccess is configured to display untranslated

4.4 Multi-language support for URL aliases 266

content, then aliases in all languages will be available.

If an object is always available, the URL aliases for the object’s node assignments will be
available for all siteaccesses. This is true for both auto-generated and user-defined aliases.

Aliases which are always available

Some global aliases always need to be available regardless of which languages that are con-
figured for a siteaccess. Because of this, a new flag called "Include in other languages” has
been introduced for global aliases. It makes it possible to individually control the availability
of the different aliases.

Languages

Multilingual URL aliases do not control which languages the requested pages will be displayed
in. When a virtual URL of a node is requested, the system will figure out the correct language
based on the language configuration of the current siteaccess (refer to the example below).

Example

If you create an article called "Company” and translate it into French, there will be two auto-
generated URL aliases called "Company” and "Compagnie”.

Let’s say that you have two public siteaccesses called "gb” and "fr” with the following language
configuration:

Siteaccess ”gb” Siteaccess ”fr”
[RegionalSettings] [RegionalSettings]
SiteLanguagelist [] SiteLanguagelList[]
SiteLanguagelist []=eng-GB SiteLanguagelList []=fre-FR
SiteLanguageList []=fre-FR SiteLanguageList []=eng-GB

As the table shows, the ”gb” siteaccess is configured to use English as the most prioritized
language and French as a second one. This means that both "Company” and "Compagnie”
aliases will work. The system will bring up the English version of the article when one of the
following URLs is requested:

* http://www.example.com/gb/Company
* http://www.example.com/gb/Compagnie

Note that if you configure only one language (English) for this siteaccess, the French alias
will not be available.

While the most prioritized language for the ”fr” siteaccess is French, the second one is English.
This means that both aliases will work and the corresponding URLs will bring up the French
version:

* http://www.example.com/fr/Company

4.4 Multi-language support for URL aliases 267

* http://www.example.com/fr/Compagnie

Character transformation

The multilingual URL aliases feature uses 3 types/methods of character transformation for
URLs. Their usage is controlled by the "TransformationGroup (page 2497)” directive located
in the [URLTranslator] section of an override for ”site.ini”. The following table reveals the
available transformation methods.

Name Description

urlalias_compat This method supports lowercase Latin letters
from ”a” to ”z”, digits and underscores in
URLs. It provides the same behavior as in
eZ Publish 3.9.x and earlier versions. Capi-
tal characters are not preserved.

urlalias This method supports more characters, but
the URLs are still restricted to the ASCII ta-
ble (with a few exceptions). Capital charac-
ters are preserved.

urlalias iri This method allows all Unicode characters
in the URLs (with a few exceptions). It pre-
serves the original text as much as possible,
which results in more user-friendly URLs.
Multiple whitespaces are converted to one.
Capital characters are preserved. This is the
recommended method for both single- and
multi-language sites.

If you use the "urlalias_iri” type of transformation for URL aliases, be aware of the fact that
some web browsers use percent encoding for Unicode characters in the URLs. For example, if
a visitor enters a URL like "http://www.example.no/Ostehvel” in the address bar of a browser,
it might be automatically converted to "http://www.example.no/Osteh%C3%B8vel”. How-
ever, this won’t prevent eZ Publish from serving the requested web page. Users of Mozilla
Firefox can disable this behavior by typing about:config in the browser’s address bar to edit
the "network.standard-url.escape-utf8” preference.

Refer to the following example to learn how the multilingual URL alias feature actually works.

Example
Let’s say that we have the following site structure:

* Company (node ID: 10)

— About us (node ID: 11)
— Contacts (node ID: 12)

If node 10 ("Company”) gets translated into French, it will get the second alias "Compagnie”.
The structure of the site will look like this:

* Company|Compagnie (node ID: 10)

http://en.wikipedia.org/wiki/Percent-encoding
http://www.mozilla.org/support/firefox/edit#aboutconfig
http://kb.mozillazine.org/Network.standard-url.escape-utf8

4.4 Multi-language support for URL aliases 268

— About us (node ID: 11)
— Contacts (node ID: 12)

At this point, node 10 can be accessed by using both aliases for all siteaccesses that have both
English and French on the list of site languages. If a siteaccess is configured to use English
as the most prioritized language, both aliases will bring up the English version. If the most
prioritized language is French, both aliases will bring up the French version of the company
page for this siteaccess.

The ”About” page (node 11) can be accessed using either "Company/About” or "Compagnie/
About” as the URL. The "Company/About” alias will work for any siteaccess that has English
on the list of site languages. The "Compagnie/About” alias will only work for the siteaccesses
that are configured to use both English and French languages. In both cases, it is the English
translation that will be displayed (since the object only exists in English). If you edit the
”About” page and enable the "Always available” flag, the page will be accessible through both
aliases for all siteaccesses regardless of their language configuration (even if a siteaccess does
not have English on the list of site languages).

If the "Contacts” page (node 12) is translated into German, it will get the second alias "Kon-
takten”. In this case, the structure of the site will look like this:

* Company|Compagnie (node - id 10)

— About us (node -id 11)
- Contacts|Kontakten (node - id 12)

At this point, it will be possible to access the page ”"Contacts|Kontakten” (node 12) by using
one of the four URL aliases listed below. The following table shows which language configu-
ration of a siteaccess is required for each alias to work.

URL alias Site languages that must be enabled
”Company/Contacts” English

”Compagnie/Contacts” English and French
”Company/Kontakten” English and German
”Compagnie/Kontakten” French and German

4.4.1 Multi-language support for URL aliases / Managing URL aliases 269

4.4.1 Managing URL aliases

The administration interface makes it possible to easily manage the virtual URLs that belong
to a site. Management happens through the manipulation of two lists. While one of them is
related to node URL aliases, the other deals with global aliases. In addition, it is possible to
manage rules of wildcard based URL forwarding (so-called "wildcard aliases”) using the URL
wildcards interface.

Managing node aliases

The interface for managing the URL aliases of content nodes can be accessed by selecting
the "Manage URL aliases” item from the "Advanced” section of the context sensitive menu
for each content node. It can also be accessed by requesting ”"content/urlalias/<node_id>"
directly (where "node_id” must be replaced with the actual ID number of the desired node).
The following screenshot the interface for managing a node’s URL aliases.

(see figure 4.23)
oo <comprnB1

URL alias Language
/farticles/company info English (United Kingdom)
/MaCompagnie A French (France)
/mycompany English (United Kingdom)
Remove sele "il"' nove 2 i

English (United Kingdom) +
vIRelative to parent [SiEi

Generated aliases [2] |

Mote: These entries are automatically generated from the name of the object.
To change these names you will need to edit the object in the specific
language and publish the changes.

URL alias Language
/Gompagnie A French (France)
/Company English (United Kingdom)

Figure 4.23: The interface for managing the URL aliases of a content node

This interface provides an overview of all URL aliases that belong to the selected node. In ad-
dition, it can be used to create new and remove the existing aliases. The example shows a list
of virtual URLs for the "Company” node. There are three manual aliases: "articles/company_
info”, "MaCompagnie” and "mycompany”. While the "MaCompagnie” alias is associated with
French language, the "articles/company info” and "mycompany” aliases are in English. This
means that the same page (node) can be accessed using any of these aliases if both French
and English languages are configured for a siteaccess.

The drop-down list can be used to select the site language that the alias should be associated
with. For example, if ”Spanish” is selected, the alias will be available for all siteaccesses that
have Spanish on the list of site languages. The drop-down list contains all the languages
that are configured for the admin siteaccess. If the "ShowUntranslatedObjects (page 2358)”
setting is enabled, then all translation languages will be listed. For example, it will be possible

4.4.1 Multi-language support for URL aliases / Managing URL aliases 270

to create an alias associated with Spanish even though the actual object does not exist in this
language. Note that multilingual aliases do not control which language the requested page
will be displayed in (this depends on the language configuration of the current siteaccess).

The "Relative to parent” check-box can be used to specify where the alias/URL to be added
should start. If checked, it will start from the parent node. Otherwise, the provided alias
is created from the root of the site. For example, if you are adding a new URL alias called
“test” to a node ”"City” located at ”/country/state/city”, the new URL alias will either be ”/
country/state/test” or just ”/test” depending on whether the ”Relative to parent” check-box
was checked or unchecked.

The ”Generated aliases” window

In the example above, the "Company” node exists in both English and French languages and
thus it has two auto-generated aliases "Company” and "Compagnie”. These are automatically
created by the system based on the existing translations of the actual object. The list of auto-
generated aliases is shown in the "Generated aliases” window located towards the bottom of
the interface. The "Company” page can be accessed using any of these aliases if both French
and English languages are configured for a siteaccess.

Note that the "Generated aliases” window displays only one URL for each language that the
actual object exists in even though the parent node has several aliases in different languages.
In other words, it can happen that not all the possible combinations are shown. For example,
if a new node "Employees” is created beneath the "Company” node, it can be accessed using
one of the following URL aliases:

* Company/Employees

* Compagnie/Employees

* articles/company info/Employees
* MaCompagnie/Employees

* mycompany/Employees

However, only one of these URLs will be displayed in the list of auto-generated aliases for the
“Employees” node. The system will pick one of the auto-generated aliases of the parent node
(either "Company” or "Compagnie”), depending of the siteaccess’ language configuration.
If the most prioritized language for the admin siteaccess is English, only the "Company/
Employees” alias will be displayed in the "Generated aliases” section for the "About” node. If
the most prioritized language is French, then "Compagnie/Employees” will be displayed. The
corresponding alias will be displayed using bold characters in the list of auto-generated aliases
for the parent node. The screenshot above shows a situation when English is configured as the
most prioritized language for the admin siteaccess and thus the "Company” alias is displayed
using bold characters.

Creating a new node alias

To create a new alias, first select which site language that the alias should be associated with.
Type in the desired text for the new alias into the input field and click the ”"Create” button.

4.4.1 Multi-language support for URL aliases / Managing URL aliases 271

It is possible to create virtual URLs that make it look like if a node is situated at a different
location in the tree. For example, you can create a URL alias "my dummy folder/my article”
for a node called "Article” which in reality is located inside a folder called ”Articles”. Note
that in this case, the "Relative to parent” checkb-ox must be unchecked.

Further notes

Let’s say that you have a node (somewhere in the tree, the location does not matter) called
”About us”. As previously mentioned, you can create an imaginary URL (with bogus / non-
existing parent(s)) for it. For example, you can create “company/about_us” and it will work
(the system will bring up the "About us” node). Assuming that the "Company” node does not
exist from before, if someone requests only company”, the system will return an "Object not
found” page. However, if a node called "Company” is created, the system will automatically
make a URL alias for it (most likely "company”) and thus the "company” alias will work (it
will bring up the "Company” node).

Managing global aliases

The interface for managing global aliases was introduced a long time ago. However, it was
changed in eZ Publish 3.10. This interface can be reached by clicking the "URL translator”
link under the ”Setup” tab in the Administration interface. The following image shows the
URL translator interface.

(see figure 4.24)

Globally defined URL aliases [2]

10 [25 50 100
URL alias Destination Language Always available
|| /findme content/search English (United Kingdom) yes

|| /trouve-moi content/search [French (France) no

Remove selected

Create new alias

New URL alias:
Destination (path to existing funtionality or resource):
Language

English (United Kingdom)| |
|_|Include in other languages

Figure 4.24: The interface for global URL aliases managing

As the screenshot shows, it is similar to the interface used to manipulate the URL aliases for
individual nodes. The list displays all aliases in the system. The list is sorted by the text of
the aliases (not the actual path that the alias is created for).

4.4.1 Multi-language support for URL aliases / Managing URL aliases 272

In the example above, two global aliases for the ”search” view of the "content” module have
been added. While the first alias is associated with the English language, the second one is in
French. This makes it possible to access the ”search” view using the "findme” or "trouve-moi”
aliases if the current siteaccess is configured to use both English and French. In other words
"http://www.example.com/content/search”, "http://www.example.com/findme” and "http:/
/www.example.com/trouve-moi” will bring up the search interface. The "Always available”
column indicates whether the alias is always available or not. In the screenshot above, the
“findme” alias is always available (it will work for all siteaccesses regardless of their language
configuration).

Note that unlike before 3.10, this list does no longer show aliases for nodes. The node aliases
can be viewed and edited (individually, for every node) from within the node alias interface
which was described earlier.

Creating a new global alias

To create a new global alias, input the desired virtual URL and the path to existing func-
tionality or resource; this can be a module/view-combination or the address of a node. The
specified alias will always start at the root of the site. The language drop-down list can be
used to select which site language the alias should be associated with. If the "Include in
other languages” checkbox is selected, the newly created alias will work for all siteaccesses
regardless of their language configuration.

Note that it is possible to use the global aliases interface to create aliases to nodes (to for
example ”content/view/full/<node_id>" or a virtual URL). However, such aliases will not
appear in the global list. They will automatically appear in the node aliases interface for the
corresponding node.

Managing wildcard URL aliases

The interface for managing wildcard aliases can be reached by clicking the "URL wildcards”
link under the ”Setup” tab in the administration interface. The following image shows how
the URL wildcards interface looks like.

(see figure 4.25)

The interface displays all wildcard aliases in the system and enables you to create new ones.
In the example above, three wildcard aliases have been added. While the first two aliases are
in English, the third one is in German.

When someone enters a URL in the browser address bar, the system will search for a node
that matches this URL according to the specified rules of wildcard based URL forwarding. In
eZ Publish, the only wildcard character that can be used in aliases is asterisk (*). It can be
repeated several times within one alias. Note that all wildcard characters within one alias are
automatically assigned numbers: 1, 2, 3, ... These are used when you specify a destination
for this alias: {1}, {2}, {3}, ...

The "Type” column indicates whether the alias is a ”direct” or "forward” one. In the screenshot
above, the first alias is of the "forward” type, which means the system will redirect users to the
original URL of the node that is being accessed (destination). In other words, when someone
enters a URL like "http://www.example.com/pictures/home/photo/” in the address bar of
a browser, the system will redirect the user to "http://www.example.com/media/images/

4.4.1 Multi-language support for URL aliases / Managing URL aliases 273

Defined URL aliases with wildcard[3]

1025 50 100

URL alias wildcard Destination Type
|| pictures/*™ media’images/{1}/{2} Forward
|| user™ accounts/usernames/{1} Direct
|| kontakten™ die-Gesellschaft/Uber-Uns/Kontakten/{1} Direct

Remove selected

Create new URL forwarding with wildcard

New URL wildcard:
Destination:

| |Redirecting URL

Create

Figure 4.25: The interface for managing wildcard URL aliases

home/photo/”.

Creating wildcard aliases

To create a new wildcard alias, input the desired text of the alias and the destination address
into the corresponding fields. If the “"Redirecting URL” checkbox is selected, the newly created
alias will work as "forward” one. After you click the €Create€ button, the newly added alias
will appear on the list.

4.4.2 Multi-language support for URL aliases / URL transformation rules 274

4.4.2 URL transformation rules

When a site administrator enters a value for a new virtual URL, the system will perform
cleanup of the input by using so-called URL transformation rules. This is done in order to
avoid problems with certain characters and to ensure that the alias conforms the standards
and the other URLSs of the site. If an inputted alias is modified, the user will be notified.

Note that in eZ Publish 3.10, the transformation of entered/generated aliases has changed.

Unicode support

In versions prior to 3.10, URL transformation rules were more restrictive and only supported
some ASCII characters (lowercase Latin letters from ”a” to ”z”, digits and underscores). This
caused problems for many non-western languages that use different alphabets, some of them

which are difficult to transliterate.

From eZ Publish 3.10, it is possible to enable Unicode support for the URLs and thus no
transliteration needs to be performed since most characters are allowed. The following char-
acters are not allowed: ampersand, semi-colon, forward slash, colon, equal sign, question
mark, square brackets, parenthesis and the plus sign. Note that spaces are only allowed as
word separators. These characters are not allowed in order to avoid miscellaneous problems
(related to the HTTP protocol).

The Unicode characters are encoded using the IRI standard. The text is encoded using UTF-
8 before further encoding is performed. The resulting URL will contain characters that are
compatible with the HTTP protocol and which will work in all existing browsers/clients. Note
that modern browsers will decode the URL and display the characters using Unicode.

Dash/underscore/space

In versions prior to 3.10, only underscores were allowed as separators of words. From 3.10, it
is possible to choose which word separator that should be used. This can be done by changing
the value of the "WordSeparator (page 2496)” configuration directive located in the [URL-
Translator] section of an override for ”site.ini”. It can be set to either ”dash”, “underscore”
or "space”. Note that this setting will be ignored when the "urlalias_compat” transformation
method is used (since it only supports underscores as separators).

Case sensitivity

When the "urlalias” or ”urlalias iri” transformation method is used, the URLs will consist of
mixed cases (uppercase and lowercase characters). This is different from the traditional/old
behavior where every letter was converted to lowercase. Instead, the system will preserve the
cases and store the URL aliases accordingly. However, the URLs themselves will not be case
sensitive. For example, the URL alias for a node called ”About Us” will be "About-Us” (assum-
ing that the word separator is a dash). The "About Us” node will be accessible regardless of
how the URL is specified when it comes to lowercase and uppercase letters. In other words,
the node will be accessible through all of the following URLs: "www.example.com/about-us”,

” "N

"www.example.com/About-us”, "www.example.com/ABOUT-US”; and so on.

Note that if there are two nodes with (almost) identical names within the same location (for

http://www.ietf.org/rfc/rfc3987.txt
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/UTF-8

4.4.2 Multi-language support for URL aliases / URL transformation rules 275

example "My article” and "My Article” inside a folder called "News”), the system will generate
unique URL aliases for newly introduced conflicting nodes by attaching numbers to their URL
aliases. For example, if a node called "My article” already exits and "My Article” is created at
the same location, the URL alias of the second ("My Article”) node will be "My-Article2”. If a
third "MY Article” node is introduced, it’s URL alias will be "MY-Article3”; and so on.

Alias text filtering

Support for filtering was implemented in order to introduce more flexibility when it comes to
the generation of the aliases. The filters are performed by the system on the URLs before the
result is transformed to a valid alias. The filters can be created as extensions. The following
text explains how to create a new filter.

* Open the 7site.ini” override and add a new extension (f.ex. "myfilters”) under the [URL-
Translator] section.

Extensions[]
Extensions[]=myfilters

* Add a new filter in the "Filters[]” array (f.ex. ”StripWords”) under the [URLTranslator]
section..

Extensions[]
Extensions[]=myfilters

Filters[]
Filters[]=StripWords

The system will search for the ”stripwords.php” file containing the ”StripWords” filter
class.

* Create a file called "stripwords.php” located in the "extension/myfilters/urlfilters” direc-
tory. Note that all filters must be placed inside the "urlfilters” directory located within
an extension’s directory. Make sure that the newly created file contains the following

lines:
<7?php

class StripWords

{
function process($text, $languageObject, $caller)
{

return str_replace("hell", "", $text);

}

>

The filter class ”StripWords” implements a method called “process” which has three
parameters: the text to filter, the language object (eZContentLanguage (page 999)) and
the object which called the filter process. The method returns a filtered version of the

4.4.2 Multi-language support for URL aliases / URL transformation rules 276

text. In this example, all occurrences of the word "hell” are removed (replaced with
nothing). In other words, after this filter is introduced, newly created URLs will not
contain the word "hell”.

Refer to the "[URLTranslator] (page 2494)” section of the ”site.ini” for more information
about the "Filters” setting.

4.4.3 Multi-language support for URL aliases / Custom transformation commands 277

4.4.3 Custom transformation commands

In order to transform the URLs according to specific needs, it is possible to create and use
so-called custom commands. The commands can be created as extensions and added to the
system using an override of the “transform.ini” configuration file. The following text explains
how to create a custom transformation command for URLs.

Let’s say that for some reason, we would like all URLs to be reversed. This can be achieved
by creating a custom transformation command.

1. Creating a new extension

A new file must be create and placed inside the directory of an extension. The file must
contain a class that has a static method called "executeCommand” with three parameters:
"$text”, "$command” and ”$charsetName”.

e $text - The input text to transform

* $command - The name of the command to execute, this can be used to keep multiple
commands in one function

* $charsetName - The name of the charset in use for $text, usually not needed

In this example, we will create a "myreverse.php” file under the “extension/myextension/
transformation” directory and put the following lines of code into it:

<7php
class MyReverse
{
function executeCommand($text, $command, $charsetName)
{
$text = strrev($text);
return $text;
}
+
7>

As the code shows, the function will return a reversed version of the inputted text.

2. Registering a new transformation command in the “transform.ini” file

The command must be registered in the ”transform.ini” configuration file. To do that, you
need to add a new line into the "Commands[]” array located under the ”[Extensions]” section.
The line must contain the path to the PHP file, a colon (used for separation) and the class
name that should be used. The following example demonstrates how this can be done.

[Extensions]

Commands []

Commands [my_reverse] =extension/myextension/transformation/
myreverse.php:MyReverse

4.4.3 Multi-language support for URL aliases / Custom transformation commands 278

3. Adding a new command to the corresponding transformation group

The newly created command must be added in the "transform.ini” file to one of the groups
that will be used for URL text transformation. In the example below, the custom command
“my reverse” is added to the "urlalias_iri” transformation group.

[urlalias_iri]

Commands []
Commands []=url_cleanup_iri
Commands []=my_reverse

From now on, newly generated URLs will be reversed because they will be processed by the
custom “my reverse” command that we added to the list of commands to be performed when
the ”urlalias iri” transformation method is used.

4.5 Clustering 279

4.5 Clustering

The clustering feature makes it possible to run an eZ Publish site on several web servers. A
site that is running on a cluster of servers will have better performance and will be able to
handle more traffic.

Before eZ Publish clustering was implemented, the only way to support multiple servers was
to store all cache files and images locally on separate file systems (one for each web server)
and use "rsync” or NFS to synchronize caches & binary files. This was far from perfect, and
induced many limitations. Instead, you can configure the system to store all content related
caches, images and binary files in the database. This ensures that all the cluster nodes use
the same cache files and have access to the same images and binary files. In other words,
when content is updated, changes are automatically and instantly made available for every
web servers in the cluster.

Supported database types

The clustering code is optimized for MySQL databases and requires the InnoDB storage en-
gine. This storage engine will be used when creating the database tables needed for cluster-
ing. Contact your database administrator if you are unsure about whether InnoDB is available
on your server.

Version 1.8 of the eZ Publish Extension for Oracle Database makes it possible to use Oracle
as a database for eZ Publish version 4.0 and later and also includes support for the clustering
functionality. Note that the clustering functionality provided by this extension may differ
slightly from the generic implementation included in a standard eZ Publish distribution.

For now, eZ Publish does not support clustering for PostgreSQL databases. Also it is important
to keep in mind that the supported databases depend on the cluster file handler that is used.
For instance, MySQL is always supported, whereas Oracle is only supported for eZ DB File
Handler. As the eZ Publish development moves forward more database handlers will of course
be made available.

How it works

Data that must be synchronized between the different servers is stored using the database.
However custom templates and design items will not be stored on the database.
The following overview will give an overview of which data is saved where:

Data stored using the database includes:

* Binary files
* Image and image alias files
* Caches related to content:

— Content view cache

— Template block cache
— Expiry cache

4.5 Clustering 280

URL alias cache
RSS cache

User info cache

Class identifier cache

Sort key cache
Other files are stored using the file system, including (but not limited to):

* INI files

* Template files

* Compiled templates

» PHP files

* Log files

* Caches that are not related to content:

Global INT cache
INI cache
Codepage cache

Character transformation cache

Template cache

— Template override cache

Content view cache

When eZ Publish is displaying a page (a content node), it executes the "view” view of the
“content” module and include the output in the page layout. If the output is cached (page
428), the cache file(s) will be read and served. If not, the system will fetch the content stored
in the eZ Publish object database (page 104), render the necessary templates, generate a
web page and store the resulting XHTML on the file system before serving it. As previously
mentioned, these files can be stored in the database and thus the files (along with changes)
are easily and immediately available to all servers in the cluster.

Images and image aliases

The approach described above is also used when it comes to images and image aliases (image
variations). However, the solution is a bit more complicated because images are usually
served directly by the web server (for instance Apache). Since the web server isn’t able to
communicate with the database, the images need to be served using a PHP script called
“index image.php”. This is true for all content images, but not for images that are related to
design.

Note that youll need to add new rewrite rules in order to instruct Apache to use ”index_
image.php” when serving images. This is explained in the chapters setting it up for an eZ DB
FileHandler (page 292) and Setting it up for an eZ DFS FileHandler (page 297).

4.5 Clustering 281

Notes about clearing the caches

Since eZ Publish 3.10 clearing the caches does not lead to the physical removal of cache files
when using DB based handlers anymore (since this operation can be quite time consuming).
The system will mark the cache files invalid instead of removing them physically from the
database or file system. This can be done by either marking each particular cache file ex-
pired or setting the global expiry (the latter typically happens when a significant amount of
changes is needed, e.g. when clearing all the caches of a specific type). The global expiry is a
timestamp that is used as an expiry value for all the caches in the system. If the global expiry
is set to a certain date, all cache files that are older than this date will not be used. Note that
the system will re-write old/expired cache file entries when re-creating the caches.

In order to physically remove the cache files from the database, the ”ezcache.php (page
2768)” script needs to be run with the ”--purge” option. The following example shows how
to remove the content caches that are more than two days old:

$php bin/php/ezcache.php --clear-id=content --purge --expiry=’-2 days’

Note that "$php” should be replaced by the path to your php executable.

Extra connections in MySQL

The new clustering code available since eZ Publish 3.10 performs an extra connection when
writing content to the database. (This connection checks whether the file has been modified
since the write lock was acquired; if it has been modified, there is thus no longer a need to
write.) Because of this, the maximum number of database connections in MySQL must be
increased by 30-50%. If persistent connections are enabled, the cluster code will no longer
share connections with normal database calls, so the maximum number of connections previ-
ously used will have to be doubled.

Oracle-specific differences

If you use the clustering functionality provided by the eZ Publish Extension for Oracle
Database, note that the system may behave differently from what is described above. If
all content related caches are stored in an Oracle database, clearing the caches will always
lead to their physical removal; the "ezcache.php” script will also physically remove the cache
entries from the database, even when executed without the ”--purge” option.

Cluster file handlers

The cluster file handler mechanism makes it possible to store, retrieve, rename, delete, etc.
files using the database. The following file handlers are known to the system by default (click
on the links for more information):

1. eZFS (located in the "kernel/classes/clusterfilehandlers/ezfsfilehandler.php” directory
of the eZ Publish installation)

2. eZFS2(located in the "kernel/private/classes/clusterfilehandlers/ezfs2filehandler.php”
directory of the eZ Publish installation)

4.5 Clustering 282

3. eZDB (located in the "kernel/classes/clusterfilehandlers/ezdbfilehandler.php” directory
of the eZ Publish installation)

4. eZDEFS (located in the "kernel/private/classes/clusterfilehandlers/ezdfsfilehandler.php”
directory of the eZ Publish installation)

Note that eZFS and eZFS2 file handlers do not allow actual eZ publish clustering by using
multiple servers. Use eZDB and eZDFS for cluster file handling.

Additional HTTP header

Since eZ Publish 3.9 an additional HTTP header called ”Served-by” is supported. This feature
was added for the purpose of testing and debugging. It is typically useful when you need to
check, from the client side, which server handled the request. The following example shows
a part of a server response that contains this header:

Last-Modified: Fri, 29 Jun 2007 09:35:54 GMT
Served-by: 62.70.12.230
Content-Language: en-GB

4.5.1 Clustering / Cluster File Handlers 283

4.5.1 Cluster File Handlers

The cluster file handler mechanism makes it possible to store, retrieve, rename, delete, etc.
files using the database. The following file handlers are known to the system by default:

1. eZFS (located in the "kernel/classes/clusterfilehandlers/ezfsfilehandler.php” directory
of the eZ Publish installation)

2. eZFS2 (located in the "kernel/private/classes/clusterfilehandlers/ezfs2filehandler.php”
directory of the eZ Publish installation)

3. eZDB (located in the "kernel/classes/clusterfilehandlers/ezdbfilehandler.php” directory
of the eZ Publish installation)

4. eZDFS (located in the "kernel/private/classes/clusterfilehandlers/ezdfsfilehandler.php”
directory of the eZ Publish installation)

Note that eZFS and eZFS2 file handlers do not allow actual eZ publish clustering by using
multiple servers. Use eZDB and eZDFS for cluster file handling.

eZ FS File Handler

This is the default file handler which makes it possible to use the file system when dealing
with files.

eZ FS2 File Handler

This is the enhanced standard file handler, with better concurrency handling. It requires linux
or PHP 5.3 on windows, and is still considered experimental.

eZ DB File Handler

This is the database file handler. It makes it possible to use the database when dealing with
files (in a cluster environment, this would typically be images, uploaded binary files and
content-related caches, etc.). It is split into different back-ends that are compatible with
the supported database engines. The default back-ends are located in the ”kernel/classes/
clusterfilehandlers/dbbackends” directory (currently only the back-end for MySQL).

Cache files are copied locally when used by a front-end. When using eZ DB File Handler both
the metadata and the binary data will be stored using the database, but the metadata will be
stored in the ezdbfile table and the binary data is split in chunks and will be stored in ezdbfile_
data table.

Supported database

Currently supported databases for this file handler are MySQL and Oracle (when using the
eZOracle extension).

4.5.1 Clustering / Cluster File Handlers 284

eZ DFS File Handler

This is the Distributed File System handler with a DB overlay. This handler is required for
NFS-based architectures. It clusters by storing the cluster files mainly on NFS (the distributed
file system), while the file metadata (size, mtime, expiry status) are maintained in a database
table similar to the one used by eZ DB file handler. NFS is used to read and write the reference
copy of clustered files. Cache files are copied locally when used by a front-end, whereas
images and binary files (when accessed directly via the browser) will be streamed directly
from NFS.

Note: The eZ DFS File Handler is not available in eZ Publish 4.1. This documentation applies
to eZ Publish 4.2 and above as regards to eZ DFS File Handler.

Note: reverse proxies

High traffic on the binary files will not be handled well by the cluster database. In case of
high traffic it is recommended to use Varnish or Squid.

Supported database

Currently only MySQL is supported as database for this file handler.

Specific eZ DFS global architecture configuration

The two most important aspects of the eZ DFS architecture are the cluster database and
the NFS mount point. The first aspect implies that the database structure must be created
manually. The definition of this table can be found in the eZ DFS MySQL driver class file
located in the root of your eZ Publish installation here:

kernel/private/classes/clusterfilehandlers/dfsbackends/mysql.php

Since eZ DFS is based on NFS, each eZ Publish installation sharing the same relational
database must use the same cluster database and each should have a local mount point to the
same NFS export. The NFS server has to be available and writeable by the webserver’s user
on each eZ Publish server. Also it recommended that each eZ Publish server is configured in
the exact same way. Refer to your system and server manual on how to configure this for your
system. It is required that each eZ Publish installations sets the NFS mount point in the global
override of their settings/file.ini configuration file to the same location. This must be done in
the configuration group ”[eZDFSClusteringSettings]” setting "MountPointPath=". The NFS
mount point is a local folder on each eZ Publish server that links to the network file system
where the handler stores the files.

It is important to know that var directories should never be shared amongst instances, since
they will then automatically be synchronized. This is valid for both eZ DB and eZ DFS, because
it is the cluster handler that takes care of synchronizing data from and to the centralized
repository.

For more information visit the chapter ”setting it up for a eZDFS file handler (page 297)”.

4.5.2 Clustering / Cluster Configuration Settings 285

4.5.2 Cluster Configuration Settings

Please, refer to the documentation on the left menu about Cluster Configuration Set-
tings for more information on this matter.

4.5.2 Clustering / Cluster Configuration Settings 286

Cluster DB Configuration Settings
Summary

Configuration Settings for Cluster DB

Description

The cluster settings are located in an override of your 7”settings/file.ini” file
(most likely ”settings/override/file.ini.append.php”or "settings/siteaccess/ <SITE_ACCESS>/
file.ini.append.php”)

When using the eZDB file handler the settings must be configured in the [ClusteringSettings]
block. When using the eZDFS file handler the settings in the [eZDFSClusteringSettings] block
must also be configured along with setting ”"FileHandler=eZDFSFileHandler” in [ClusterSet-
tings] in the same file.

Note: It is recommended to use a distinct database server if you are clustering for a high
traffic website

[ClusteringSettings]
FileHandler
Possible configuration settings are:

* FileHandler=eZFSFileHandler

* FileHandler=eZDBFileHandler

* FileHandler=eZDFSFileHandler
This setting sets the cluster file handler. For more information regarding the cluster file han-
dlers visit chapter "cluster file handlers”. Since eZ Publish 4.1 the names of the file handlers
have changed. For instance ’ezdb’ is no longer recognised, the correct setting here would

be ’eZDBFileHandler’. When using an eZ DFS File Handler please refer to the settings in
[eZDFSClusteringSettings].

DBBackend
Possible configuration settings are:

* DBBackend=eZDBFileHandlerMysqlBackend

e DBBackend=eZDBFileHandlerOracleBackend

Use this setting to define the