
Persistence cache

Introduction
Persistent cache

Layers
Transparent cache

Entity stored only once
What is cached?
Legacy kernel cache purging

PersistenceCachePurger
Reusing Cache service

Get Cache service
Via Dependency injection
Via Symfony2 Container
In legacy via Symfony2 Container

Using the cache service

Introduction

This page describes how Persistence cache works, and how to reuse the cache service it uses.

Configuration

For configuring the cache service, look at the page.Persistence cache configuration

Persistent cache

Layers

Persistence cache can best be described as a implementation of
SPI\Persistence that wraps around the main implementation (currently:
"Legacy Storage Engine").

As shown in the illustration this is done in the exact same way as the
SignalSlot feature is a custom implementation of API\Repository wraps
around the main Repository. In the case of Persistence Cache, instead of
sending events on calls passed on to the wrapped implementation, most of
the load calls are cached, and calls that perform changes purges the
affected caches. This is done using a Cache service which is provided by
StashBundle; this Service wraps around the Stash library to provide
Symfony logging / debugging functionality, and allows configuration on
cache handlers (Memcached, Apc, Filesystem, ..) to be configured using
Symfony configuration. For how to reuse this Cache service in your own
custom code, see below.

Transparent cache

The persistence cache, just like the HTTP cache, tries to follow principles of
"Transparent caching", this can shortly be described as a cache which is
invisible to the end user and to the admin/editors of eZ Publish where
content is always returned "fresh". In other words there should not be a
need to manually clear the cache like was frequently the case with eZ
Publish 4.x (aka "legacy"). This is possible thanks to an interface that
follows CRUD (Create Read Update Delete) operations per domain, and
number of other operations capable of affecting a certain domain is kept to
a minimum.

Persistence cache is a new feature introduced in 5.1. It does not exists in previous versions.

https://doc.ez.no/display/EZP51/Persistence+cache+configuration

Entity stored only once

To make the transparent caching principle as effective as possible, entities
are as much as possible only stored once in cache by their primary id.
Lookup by alternative identifiers (identifier, remoteId, ..) is only cached with

compositithe identifier as cache key and primary id as it's cache value, and
ons (list of objects) usually keep only the array of primary id's as their cache
value.

This means a couple of things:

Memory consumption is kept low
Cache purging logic is kept simple (Example: $sectionService->delete(3)
clears "section/3" cache entry)
Lookup by identifier and list of objects needs several cache lookups to be
able to assemble the result value
Cache warmup usually takes several page loads to reach full as identifier is
first cached, then the object

What is cached?

Persistence cache aimed in its first iteration for caching all SPI\Persistence
calls used in a normal page load, including everything needed for
permission checking and url alias lookups.
However Search queries are currently not cached as it is more difficult to
make sure they stay fresh unless all search cache is purged on every
modification, or a complicated search cache walking purge system is
implemented that is able to detect which search result to clear (this is what
is planned for future versions, but it is planned to be done when there is a
background process system in place).

Anyway, the following SPI calls are not currently cached:

ObjectStateHandler
TrashHandler
UrlWildCardHandler

SearchHandler::*
transactions

For more details on which calls are cached or not, and where to contribute additional caches, check out the .source

Legacy kernel cache purging

Currently with the Dual-kernel eZ Publish has in version 5.x, the "Transparent caching principle" referred to above has one major obstacle. eZ
Publish 4.x ("legacy") kernel was not made for such a thing and has a lot of API's that can make changes to the data in the database
and hence make the persistence cache "stale" (aka out of date).

A couple of things are in place to try to avoid this from happening / making it less of a problem:

The Persistence cache has a expiry time configurable in ezpublish.yml
LegacyBundle (the bundle that exposes legacy to Symfony and integrates Symfony with legacy) has a PersistenceCachePurger

PersistenceCachePurger

PersistenceCachePurger is setup by LegacyBundle to receive all relevant triggered by legacy kernel, and clear relevant Persistencecache events
cache based on the incoming data.
This means a "Clear all cache" operation done in legacy will also clear all persistence cache, it also means relevant content cache is cleared on
publishing, so all code using the api's covered by these events should in effect be cache safe in regards to persistence cache.

So, in case of stale persistence cache, a clear all cache in legacy admin interface is thus still possible, however a manual cache clear is also
possible but how to do it depends on which cache handler is currently used.

Reusing Cache service

https://github.com/ezsystems/ezpublish-kernel/tree/master/eZ/Publish/Core/Persistence/Cache
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Bundle/EzPublishLegacyBundle/Cache/PersistenceCachePurger.php
https://github.com/ezsystems/ezpublish-legacy/blob/master/doc/features/5.0/event.txt
https://github.com/ezsystems/ezpublish-legacy/blob/master/doc/features/5.1/event.txt

Using the cache service allows you to use a interface and not have to care about if the system has been configured to place the cache in
Memcached, Apc or on File system. And as eZ Publish requries that instances uses a cluster aware cache, you can safly assume your cache is
shared across all eZ Publish web servers.

Get Cache service

Via Dependency injection

In eZ Publish 5.x Symfony2 stack you can simply define that you require the "cache" service in your configuration like so:

myApp.myService:
 class: %myApp.myService.class%
 arguments:
 - @stash.default_cache

The "cache" service is an instance of the following class: Tedivm\StashBundle\Service\CacheService

Via Symfony2 Container

Like any other service, it is possible to get the "cache" service via container as well like so:

/** @var $cacheService \Tedivm\StashBundle\Service\CacheService */
$cacheService = $container->get('stash.default_cache');

In legacy via Symfony2 Container

When eZ Publish legacy runs via eZ Publish 5.x Symfony2 stack, you will be able to get the service container in the following way:

Interface warning
Current implementation uses a caching library called , via . If this changes, then the Interface of the cache serviceStash Stash-bundle
will most likely change as well.

Cache key warning
When reusing the cache service within your own code, it is very important to not conflict with the cache keys used by eZ Publish, hence
why example of usage starts with a unique "myApp" key for the namespace of your own cache, you must do the same!

Also, this means that when eZ Publish clears all cache, it will also wipe out your custom cache as well!

Multi site warning
Be aware that in some edge cases as of eZ Publish 5.1, we recommend that the cache system is practically disabled using a Blackhole
driver. This is the case in multi repository (one eZ Publish install, several databases) because the current configuration does not
support setting cache key prefixes pr database (the current configuration is global to installation and not possible to set pr site / site
group).

In this case the cache service will only keep your cache during the request, if the recommended InMemory setting is enabled.

yml configuration

getting the cache service in php

http://stash.tedivm.com/
https://github.com/tedivm/TedivmStashBundle

// From a legacy module or any PHP code running in legacy context.
$container = ezpKernel::instance()->getServiceContainer();

/** @var $cacheService \Tedivm\StashBundle\Service\CacheService */
$cacheService = $container->get('stash.default_cache');

Using the cache service

Example usage of the cache service:

$cacheItem = $cacheService->getItem('myApp', 'object', $id);
 if ($cacheItem->isMiss())
 {
 $myObject = $container->get('my_app.backend_service')->loadObject($id)
 $cacheItem->set($myObject);
 }
 else
 {
 $myObject = $cacheItem->get();
 }
 return $myObject;

For more info on usage, take a look at Stash's documentation.

Getting cache service in legacy

Actuall example from cache use in ezpublish-kernel

http://stash.tedivm.com/

	Persistence cache

