
Legacy code and features
eZ Publish 5 has a strong focus on backwards compatibility and thus lets you reuse code you might have written for 4.x, including templates and
modules.

Legacy Mode
What it does
What it doesn't do

Legacy Template inclusion
Template parameters

Running legacy code
Legacy modules

Routing fallback & sub-requests
Using eZ Publish 5 and Symfony features in Legacy
Running legacy scripts and cronjobs

Legacy Mode

Legacy mode is a specific configuration mode where eZ Publish's behavior is the closest to v4.x. It might be used in some very specific use
cases, such as .running the admin interface

What it does

Still runs through the whole Symfony kernel. As such, Symfony services can still be accessed from legacy stack.
Disables the UrlAliasRouter. As such, the .ViewController will be bypassed

What it doesn't do

Increase performance. Legacy mode is actually since it won't use the HttpCache mechanism.painful for performances

Legacy Template inclusion

It is possible to include old templates () into new ones..tpl

{# Twig template #}
{# Following code will include my/old_template.tpl, exposing $someVar variable in it
#}
{% include "design:my/old_template.tpl" with {"someVar": "someValue"} %}

Or if you want to , relative to folder:include a legacy template by its path ezpublish_legacy

Hint
Read to have an overview of common concepts and terminology changes.Intro for eZ Publish 4.x/3.x developers

In a migration context, as it prevents all the performance goodness (e.g. Http Cache) tousing Legacy Mode is never a good option
work.
Always keep in mind that, not running in legacy mode, if a content still doesn't have a corresponding Twig template/controller, e

.Z Publish will always fallback to the legacy kernel, looking for a legacy template

Include a legacy template using the old template override mechanism

https://doc.ez.no/pages/viewpage.action?pageId=12125336
https://doc.ez.no/display/EZP51/Legacy+template+fallback
https://doc.ez.no/display/EZP51/Legacy+template+fallback

{# Following code will include
ezpublish_legacyextension/my_legacy_extension/design/standard/templates/my_old_templat
e.tpl, exposing $someVar variable in it #}
{% include
"file:extension/my_legacy_extension/design/standard/templates/my_old_template.tpl"
with {"someVar": "someValue"} %}

Template parameters

Scalar and array parameters are passed to a legacy template .as-is

Objects, however, are being converted in order to comply the legacy . By default is used, exposing all publiceZ Template API a generic adapter
properties and getters. You can define your own converter by implementing and declare it as a service with the the appropriate interface ezpubli

 tag.sh_legacy.templating.converter

Running legacy code

eZ Publish 5 still relies on the legacy kernel (from 4.x) and runs it when needed , making it . inside an isolated PHP closure sandboxed This is
available for your use as well making it possible to run some PHP code inside that sandbox through the runCallba
ck() method.

<?php
// Declare use statements for the classes you may need
use eZINI;

// Inside a controller extending eZ\Bundle\EzPublishCoreBundle\Controller
$settingName = 'MySetting';
$test = array('oneValue', 'anotherValue');
$myLegacySetting = $this->getLegacyKernel()->runCallback(
 function () use ($settingName, $test)
 {
 // Here you can reuse $settingName and $test variables inside the legacy
context
 $ini = eZINI::instance('someconfig.ini');
 return $ini->variable('SomeSection', $settingName);
 }
);

The example above is very simple and naive - in fact for accessing configuration settings from the Legacy Stack using the isConfigResolver
recommended.

Using the legacy closure, you'll be able to even run complex legacy features, like an :eZ Find search

eZ Publish 5.1+

Content / objects from the Public API (re-fLocation are converted into / objectseZContentObject eZContentObjectTreeNode
etched).

Simple legacy code example

https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/MVC/Legacy/Templating/LegacyCompatible.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/MVC/Legacy/Templating/LegacyAdapter.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/MVC/Legacy/Templating/Converter/ObjectConverter.php
https://doc.ez.no/display/EZP51/Legacy+configuration
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/MVC/Legacy/Templating/Converter/ApiContentConverter.php

use eZFunctionHandler;

$searchPhrase = 'My search phrase';
$sort = array(
 'score' => 'desc',
 'published' => 'desc'
);
$contentTypeIdenfiers = array('folder', 'article');
$mySearchResults = $this->getLegacyKernel()->runCallback(
 function () use ($searchPhrase, $sort, $contentTypeIdenfiers)
 {
 // eZFunctionHandler::execute is the equivalent for a legacy template fetch
function
 // The following is the same than fetch('ezfind', 'search', hash(...))
 return eZFunctionHandler::execute(
 'ezfind',
 'search',
 array(
 'query' => $searchPhrase,
 'sort_by' => $sort,
 'class_id' => $contentTypeIdenfiers
)
);
 }
);

Legacy modules

Routing fallback & sub-requests

Any route that is not declared in eZ Publish 5 in an included and that is not a valid routing.yml UrlAlias will automatically fallback to eZ
 (including admin interface).Publish legacy

This allows all your old modules to work as before, out-of-the-box (including kernel modules), and also allows you to reuse this code from
your templates using sub requests:

{{ render(url('ez_legacy', {'module_uri': '/content/view/sitemap/2'})) }}

Using eZ Publish 5 and Symfony features in Legacy

If for some reason you need to develop a legacy module and access to eZ Publish 5 / Symfony features (i.e. when developing an extension for
admin interface), you'll be happy to know that you actually have access to all services registered in the whole framework, including bundles,
through the service container.

The example below shows how to retrieve the content repository and the logger.

Using eZ Find

Template legacy module sub-request

// From a legacy module or any PHP code running in legacy context.
$container = ezpKernel::instance()->getServiceContainer();

/** @var $repository \eZ\Publish\API\Repository\Repository */
$repository = $container->get('ezpublish.api.repository');
/** @var $logger
\Symfony\Component\HttpKernel\Log\LoggerInterface|\Psr\Log\LoggerInterface */
// PSR LoggerInterface is used in eZ Publish 5.1 / Symfony 2.2
$logger = $container->get('logger');

Running legacy scripts and cronjobs

Legacy scripts can be executed form the Symfony CLI, by using the ezpublish:legacy:script command,
specifying the path to the script as argument.

The command will need to be executed from eZ Publish's 5 root, and the path to the desired script must exist in the folder.ezpublish_legacy
Here's a usage example:

php ezpublish/console ezpublish:legacy:script
bin/php/ezpgenerateautoloads.php

If you want to access the script's help please be aware that you will need to use the newly introduced option, since --help is--legacy-help
already reserved for the CLI help.

Here's an example:

php ezpublish/console ezpublish:legacy:script --legacy-help
bin/php/ezpgenerateautoloads.php

The same logic will apply for cronjob execution.
Legacy cronjobs are triggered by the legacy script, which expects the name of the cronjob to run as a parameter.runcronjobs.php
This is how you can run cronjobs from the Symfony CLI:

Retrieve services from the container

Tip
The example above works in legacy modules and CLI scripts

Note: This feature has been introduced in eZ Publish 5.1.

Important
Running legacy scripts and cronjobs through the Symfony stack is highly recommended !
Otherwise, features from the Symfony stack cannot be used (i.e. HTTP cache purge) and cache clearing. NB: Some script we know
won't affect cache, are still documented to be executed the direct way.

The option should be added the path to the script for this to work.--legacy-help before

php ezpublish/console ezpublish:legacy:script runcronjobs.php frequent

Also, if you require using additional script options, please be sure to use the long name, such as or to avoid conflicts--siteaccess --debug
between script and CLI options.
For more details regarding legacy cronjobs execution please refer to the chapter existing in doc.ez.no.Running cronjobs

http://doc.ez.no/eZ-Publish/Technical-manual/5.x/Features/Cronjobs/Running-cronjobs

	Legacy code and features

