
1.
2.

3.

4.

1.
2.

3.

Step 2 - Customizing the general layout
We will begin by customizing the global layout of our site, in order to end up with this rendering:

1 Content rendering configuration
2 Creating the template
3 Fixing the assets
4 Rendering the content
5 Extracting the layout

First, go to the root of your eZ Platform site. You should see the root folder of the clean install,
without any kind of layout. You can go to , edit this Content item and see that this page/ez
changes. When is requested, eZ Platform renders the root content using the / ez_content:view

 controller. We will customize this step by instructing Platform to use a custom template toContent
render this particular item.

eZ Platform organizes content as a tree. Each Content item is referenced by a
Location, and each Location as a parent. The root content Location has the ID b2
y default.

Content rendering configuration

To use a custom template when rendering the root content, let's create a configurcontent_view
ation block for .ezpublish

We will use the namespace, but we could have used any siteaccess instead. Edit default app/c
. At the end, add the following block, right after the languageonfig/ezplatform.yml

configuration (pay attention to indentation: should be at the same level as):default site_group

default:
 content_view:
 full:
 root_folder:
 template: "full/root_folder.html.twig"
 match:
 Id\Location: 2

This tells Platform to use the when rendering any content referenced by the Locationtemplate
with the id . There is a whole set of that can be used to customize rendering2 view matchers
depending on any criterion.

Creating the template

Download index.html
Save it in as app/Resources/views full/root_folder.app/Resources/views/

.html.twig
Refresh the site's root and you should see the site's structure, but without any styles or
images. Let's fix this.
Edit the template.root_folder.html.twig

Fixing the assets

The first thing to do is to fix the loading of stylesheets, scripts and design images.
Download assets.zip by clicking on the "Raw" button on Github.

Tutorial path

ezplatform.yml

https://doc.ez.no/display/TECHDOC/View+provider+configuration#Viewproviderconfiguration-Matchers
https://github.com/bdunogier/platform-workshop/blob/master/src/Workshop/TutorialBundle/Resources/public/index.html
https://github.com/ezsystems/ezsc2015-beginner-tutorial/blob/master/assets.zip

3.

4.

Then unpack its contents to the directory of your project. You will end up with web web/as
, containing , and subfolders.sets/ css js images

In the template, in the section, change the tags about bootstrap and <html> <style>
custom CSS lines (lines 15 to 21) with the following code:

{% stylesheets 'assets/css/*' filter='cssrewrite' %}
 <link rel="stylesheet" href="{{ asset_url }}" />
{% endstylesheets %}

As explained in the , this will iterate over the files in andSymfony assetic doc web/assets/css
load them as stylesheets. Refresh the page and you should now see the static design of the site. At
the bottom of the template, you will find tags that load jQuery and Bootstrap javascript<script>
(around line 360). Replace them with an equivalent block for scripts:

{% javascripts 'assets/js/*' %}
 <script src="{{ asset_url }}"></script>
{% endjavascripts %}

Let's finish this by fixing the design images. Locate the tag with "images/128_bike_whi
. Change the to te_avenir.png" src {{

:asset('assets/images/128_bike_white_avenir.png') }}

<img alt="Brand" src="{{
asset('assets/images/128_bike_white_avenir.png') }}">

Do the same for and refresh the page. The design should"images/logo_just_letters.png"
now be in order, with the logo, fonts and colors as the first image of this page.

Rendering the content

At this point, the template is static. It doesn't render any dynamic dataroot_folder.html.twig
from the repository.

The root is rendered by the controller action. This action assigns theez_content:viewAction
currently viewed content as the Twig variable. We will use that variable to display somecontent
of the fields from the root content. Replace the central section of the template, around line 90, with
the following block:

root_folder.html.twig

root_folder.html.twig

root_folder.html.twig

http://symfony.com/doc/current/cookbook/assetic/asset_management.html#including-css-stylesheets

<section class="buttons">
 <div class="container">
 <div class="row regular-content-size">
 <div class="col-xs-10 col-xs-offset-1
box-style">
 <h3 class="center bottom-plus
new-header">{{ ez_content_name(content) }}</h3>
 <div class="col-xs-10 text-justified">{{
ez_render_field(content, 'description') }}</div>
 </div>
 </div>
 </div>
</section>

The page will now show the values of title and description fields of the root Platform Content.

Extracting the layout

The general layout of the site, with the navigation, footer, scripts, etc., is written down in the
template we use to render the root. Let's extract the part that is common to all the pages so that we
can re-use it.

Twig supports a powerful api. Templates may declare named blocks. Anytemplate inheritance
template may extend other templates, and modify the blocks defined by its parents.

Create a new template and copy theapp/Resources/views/pagelayout.html.twig
contents of the current into it. Change the central section from theroot_folder.html.twig
previous chapter as follows:

<section class="buttons">
 <div class="container">
 <div class="row regular-content-size">
 <div class="col-xs-10 col-xs-offset-1
box-style">
 {% block content %}
 {% endblock %}
 </div>
 </div>
 </div>
</section>

This defines a block named "content". Other templates can add content to it, so that the result of
the execution of the controller is contained within the site's general layout.

Edit and replace the whole content of the file with the following code:root_folder.html.twig

root_folder.html.twig

pagelayout.html.twig

http://twig.sensiolabs.org/doc/templates.html#template-inheritance

{% extends "pagelayout.html.twig" %}
{% block content %}
<h3 class="center bottom-plus new-header">{{
ez_content_name(content) }}</h3>
<div class="col-xs-10 text-justified">{{
ez_render_field(content, 'description') }}</div>
{% endblock %}

This will re-use and replace the block with the title andpagelayout.html.twig content
description from the root folder. We could easily create more blocks in the pagelayout so that
templates can modify other parts of the page (footer, head, navigation), and we will over the course
of this tutorial. We can now create more templates that inherit from ,pagelayout.html.twig
and customize how content is rendered.

Let's do it for the Ride Content Type.

Next: >Step 3 - Create your content model

< Previous: Step 1 - Getting Ready

root_folder.html.twig

https://doc.ez.no/display/TECHDOC/Step+3+-+Create+your+content+model
https://doc.ez.no/display/TECHDOC/Step+1+-+Getting+Ready

	Step 2 - Customizing the general layout

