
HttpCache
Content Cache

Cache and Expiration Configuration
Making your controller response content-aware
Making your controller response context-aware

Content Cache

eZ Platform uses to manage content "view" cache with an . In addition it is extended Symfony HttpCache expiration model (using FOSHttpCache)
to add several advanced features. For content coming from the CMS the following is taken advantage of out of the box:

To be able to always keep cache up to date, cache is made "content-aware" to allow updates to content to trigger cache invalidation.
Uses a custom header, which both Symfony and Varnish Proxy are able to invalidate cache on X-Location-Id (for details see
cache purge document.)

To be able to also cache requests by logged-in users, cache is made " ."Context-Aware
Uses a custom vary header to allow pages to var by user X-User-Hash rights (so not per unique user, that is better served by
browser cache.)

Cache and Expiration Configuration

ezpublish:
 system:
 my_siteaccess:
 content:
 view_cache: true # Activates HttpCache for content
 ttl_cache: true # Activates expiration based HttpCache for
content (very fast)
 default_ttl: 60 # Number of seconds an Http response is valid in
cache (if ttl_cache is true)

Making your controller response content-aware

Sometimes you need your controller's cache to be invalidated at the same time as specific content changes (i.e. ESI sub-requests with trender
, for a menu for instance). To be able to do that, you just need to add header to the response object:wig helper X-Location-Id

use Symfony\Component\HttpFoundation\Response;

// Inside a controller action
// "Connects" the response to location #123 and sets a max age (TTL) of 1 hour.
$response = new Response();
$response->headers->set('X-Location-Id', 123);
$response->setSharedMaxAge(3600);

Making your controller response context-aware

ezplatform.yml

http://symfony.com/doc/current/book/http_cache.html
http://symfony.com/doc/current/book/http_cache.html#http-expiration-and-validation
https://doc.ez.no/display/TECHDOC/Purge
https://doc.ez.no/display/TECHDOC/Context+aware+HTTP+cache
http://symfony.com/doc/current/book/http_cache.html#using-esi-in-symfony2
http://symfony.com/doc/current/book/http_cache.html#using-esi-in-symfony2

If the content you're rendering depends on a user's permissions, then you should make the response :Context-aware

use Symfony\Component\HttpFoundation\Response;

// Inside a controller action
// Tells proxy configured to support this header to take the rights of a user (user
hash) into account for the cache
$response = new Response();
$response->setVary('X-User-Hash');

https://doc.ez.no/display/TECHDOC/Context+aware+HTTP+cache

	HttpCache

