
Step 3 - Using existing blocks

In this step you'll add a Content List Block and two Schedule Blocks and customize them.

Add Content List Block

At this point you can start adding blocks to the Landing Page. This is done in the Studio UI Edit
mode the required block from the menu on the right to the correct zone on theby simply dragging
page.

Not all the blocks we have planned are available to you just yet, so let's start with the simplest one.
Drag a Content List Block from the menu to the right column, click the (still empty) block and enter

. Here you give a name to the block and decide what it will display. Choose the Dogits settings
Breed Catalog folder as the Parent, select Dog Breed as the Content Type to be displayed, and
choose a limit. In our case we'll display the first three Dog Breeds we have in our database.

When you click Submit, you should see a preview of what the block will look like with the dog breed
information displayed.

Tutorial pathYou can find all files used and modified in this step on .GitHub

In this step pay close attention to the order of tasks. If you overlook a configuration file
and try to generate a Landing Page without it, the Landing Page may become corrupted
in the database. You may then get a 500 error when trying to access it. If this happens,
you should delete the page and create it again from scratch.

https://github.com/ezsystems/ezstudio-beginner-tutorial/tree/step3

As you can see, the block is displayed using a very basic, unstyled template. Built-in blocks have
 already included in the installation, and it's this one that is being used right now.default templates

But you can override it according to your needs, and add templates for new custom blocks that you
create (which we'll do in the next step). Publish the page now and we'll start configuring the block.

First let's create an override template for the Content List block. Create a folder under blocks app
 and place the new template file in it:/Resources/views

<div>
 <h3 class="heading">{{ parentName }}</h3>
 {% if contentArray|length > 0 %}
 <div class="content-list">
 {% for content in contentArray %}
 <div class="content-list-item">
 <div
class="content-list-item-image">
 {{
ez_render_field(content.content, 'photo', {
 'parameters': {
 'alias': 'content_list'
 }
 }) }}
 </div>
 <h4><a href="{{
path(content.location) }}">{{
ez_content_name(content.content) }}</h4>
 {% if not
ez_is_field_empty(content.content, 'short_description')
%}
 <div
class="attribute-short-description">
 {{
ez_render_field(content.content, 'short_description') }}
 </div>
 {% endif %}
 </div>
 {% endfor %}
 </div>
 {% endif %}
</div>

Then we add a configuration that will tell the app to use this template instead of the default one. Go
to the file that you created previously when preparing the Landing Page layout and layouts.yml

:add the following code

app/Resources/views/blocks/contentlist.html.twig

blocks:
 contentlist:
 views:
 contentList:
 template: blocks/contentlist.html.twig
 name: Content List

This block should be placed at the end of the file, within the ez_systems_landing_page_field
 key. _type Watch your indentation!

One more thing is required to make the template work. The twig file specifies an – aimage alias
thumbnail of the image that will be displayed in the block. To configure this image alias,Dog Breed
open the file and add the following code under the app/config/image_variations.yml imag

 key (once again, mind the):e_variations indentation

content_list:
 reference: null
 filters:
 - {name: geometry/scaleheightdownonly,
params: [81]}
 - {name: geometry/crop, params: [80, 80, 0,
0]}

Finally, we should add some styling to the block. Add the following CSS of the to the end web/ass
 file:ets/css/style.css

in app/config/layouts.yml

in app/config/image_variations.yml

https://doc.ez.no/display/DEVELOPER/Images

/* Landing Page */
@media only screen and (min-width: 992px) {
 aside > div {
 padding-left: 45px;
 }
}

/* Content list block */
.content-list-item {
 clear: left;
 min-height: 90px;
 padding-bottom: 5px;
 border-bottom: 1px solid black;
}

.content-list h5 {
 font-size: 1.3em;
}

.content-list-item-image {
 float: left;
 margin-right: 10px;
}

If you , you should see the new look of the Content List block.refresh the front page now

Create a Schedule Block for Featured Articles

The next block to go with is the Schedule Block that will air articles at predetermined times. We will
actually use two different schedule blocks, so that you can learn how to customize their layouts and
how to make use of the overflow functionality.

The process of creating a new layout may already look familiar to you. First, let's add a
configuration that will point to the layout. Go to the again and add the following codelayouts.yml
under :blocks

in web/assets/css/style.css

schedule:
 views:
 schedule_featured:
 template: blocks/schedule_featured.html.twig
 name: Featured Schedule Block

As you can see, the configuration at this point defines one view for the schedule block that we
called and points to a file that willschedule_featured schedule_featured.html.twig
house its template. Place this new template file in :app/Resources/views/blocks

{% spaceless %}
 <div class="schedule-layout schedule-layout--grid">
 <div class="featured-articles-block">
 <h2 class="heading">{{ 'Featured
Articles'|trans }}</h2>
 <div data-studio-slots-container>
 {% for idx in 0..2 %}
 <div class="col-md-4
featured-article-container" data-studio-slot>
 {% if items[idx] is defined %}
 {{
render(controller('ez_content:viewLocation', {
 'locationId':
items[idx],
 'viewType': 'featured'
 })) }}
 {% endif %}
 </div>
 {% endfor %}
 </div>
 </div>
 </div>
{% endspaceless %}

When you look at the template, you can see three blocks, each of which will render the Content
items using the view. As you may remember, so far we only have templates for vifeatured full
ew for Articles. This means we need to create a view template for it as well, otherwisefeatured
we will get an error when trying to add Content to the block.

For the app to know which template file to use in such a case, we need to modify the fiviews.yml
le again. Add the following code to this file, at the same level as the key:full

in app/config/layouts.yml

app/Resources/views/blocks/schedule_featured.html.twig

See the (line 5) and (line 7)data-studio-slots-container data-studio-slot
attributes? Without them you won't be able to place Content in the slots of the Schedule
Block, so don't forget about them if you decide to modify the template.

featured:
 article:
 template: "featured/article.html.twig"
 match:
 Identifier\ContentType: "article"

Now make a subfolder in the folder that houses your templates and create the following featured
 file in it:article.html.twig

{% set imageAlias =
ez_image_alias(content.getField('image'),
content.versionInfo, 'featured_article') %}
<div class="featured-article" style="background-image:
url('{{ imageAlias.uri }}');">
 <h4><a class="featured-article-link" href="{{
path('ez_urlalias', {'contentId': content.id}) }}">{{
ez_content_name(content) }}</h4>
</div>

Like in the case of the Content List block, the template specifies an image alias. Let's add it in app
 under the key:/config/image_variations.yml image_variations

featured_article:
 reference: null
 filters:
 - {name: geometry/scaleheightdownonly, params:
[200]}

The Block would already be operational now, but let's first update the stylesheet. Add the following
CSS to the end of the file:web/assets/css/style.css

in app/config/views.yml:

app/Resources/views/featured/article.html.twig

in app/config/image_variations.yml

/* Featured articles schedule block */
.featured-article-container {
 background-size: cover;
 padding: 0;
 margin-bottom: 20px;
}

.featured-article {
 height: 200px;
 padding: 0;
 background-repeat: no-repeat;
}

.featured-article-link:link,

.featured-article-link:visited {
 position: absolute;
 bottom: 0;
 margin-bottom: 0;
 background-color: rgba(255,255,255,.8);
 color: #000;
 font-size: 1.1em;
 padding: 7px;
}

.featured-article-link:hover,

.featured-article-link:focus {
 color: #654d31;
 text-decoration: none;
 border-bottom: none;
}

At this point you can add this Schedule block to your Landing Page and fill it with content to see
how it works.

Go to the Edit mode of the Front Page and drag a Schedule Block from the pane on the right to the
. Select the block and click the Block Settings icon. Choose the Featuredmain zone in the layout

Schedule Block template and confirm. We will only be able to set up overflow once we have both
blocks ready.

Now click the Add content (plus) icon, navigate to and choose one of the Articles in the All Articles
folder. You will see it appear in one of the slots in the preview. Now hover over this Article and click
Airtime. Here you can choose the time at which this Content item will be published on the Landing
Page. Do the same for two more Articles, so that all three slots are filled with content. Try to
choose different airtimes for all three of them – you will then be able to see well how the Schedule
block functions. Once you are done, take a look at the Timeline at the top of the screen. You can
move the slider to different times and preview what the Schedule Block will look like at different
hours, with content being hidden if you jumped to a point before its airtime.

in web/assets/css/style.css

At this point we have configured our Schedule Block to work well with Articles only. If you
try to add Content of any other type, you will see an error. This is because there is no fe

 view for content other than Articles defined at the moment. If you'd like someatured
more practice or want to make your website more foolproof, you can create such
templates for all other Content Types in the database.

Create a Schedule Block for Other Articles

Now we'll proceed with preparing the second Schedule Block for our Landing Page. The procedure
will be very similar as in the first case. First, let's add the new block to configuration by adding this
code to :layouts.yml

schedule_list:
 template: blocks/schedule_list.html.twig
 name: List Schedule Block

Next, we provide a template for the block:

in app/config/layouts.yml

{% spaceless %}
 <div class="other-articles-block">
 <h4 class="heading">{{ 'Other Articles'|trans
}}</h4>
 <div data-studio-slots-container>
 {% for idx in 0..2 %}
 <div data-studio-slot>
 {% if items[idx] is defined %}
 {{
render(controller('ez_content:viewLocation', {
 'locationId': items[idx],
 'viewType': 'list'
 })) }}
 {% endif %}
 </div>
 {% endfor %}
 </div>
 </div>
{% endspaceless %}

We also need a template for the view for Articles:list

<div class="other-article">
 <div class="other-article-image">
 {{ ez_render_field(content, 'image', {
 'parameters': {
 'alias': 'other_article'
 }
 }) }}
 </div>
 <h5>
 <a class="other-article-link" href="{{
path('ez_urlalias', {'contentId': content.id}) }}">{{
ez_content_name(content) }}
 </h5>
</div>

and an entry in :views.yml

list:
 article:
 template: "list/article.html.twig"
 match:
 Identifier\ContentType: "article"

Like before, we must add one more image alias to the file:image_variations.yml

app/Resources/views/blocks/schedule_list.html.twig

app/Resources/views/list/article.html.twig

in app/config/views.yml:

other_article:
 reference: null
 filters:
 - {name: geometry/scaleheightdownonly, params:
[120]}
 - {name: geometry/crop, params: [120, 100, 0,
0]}

As the last thing, let's provide the new block with some styling. Add the following to the end of the w
 file:eb/assets/css/style.css

/* Other articles schedule block */
.other-articles-block {
 padding-top: 20px;
}

.other-article {
 clear: left;
 padding-top: 5px;
}

.other-article-image {
 float: left;
 margin-right: 18px;
}

.other-article h5 {
 padding-top: 25px;
 font-size: 1.2em;
}

.other-article-link:link,

.other-article-link:visited {
 font-size: 1.2em;
}

With this done, you should be able to add a new Schedule Block to the Front Page and select the
List Schedule Block layout. Give the block an easily recognizable name, such as "Other Articles".
Add two Articles to it to see how their look will differ from the featured ones.

in web/assets/css/style.css

Set up overflow

Now let's make use of the overflow functionality. In the settings of the Featured Articles block turn
on overflow and select the Other Articles block as its overflow target. This controls how content will
behave once it has to leave the first block. This is behavior you are surely familiar with from many
websites: we have placed featured articles in the first Schedule block and planned the times on
which they will be aired. When a new article appears in this block, the last article currently in it will
be 'pushed off' and will land in the block designated as the overflow block – that means in the list of
articles below. In this way the most current articles are showcased at the top, while older articles
are still easily accessible from the front page.

You can try this out now. Add one more Article to the Featured Articles block. You will see a
message warning you that some content will be pushed out. When you confirm, the pushed out
Article will move to the top of the Other Articles block.

 Previous: Step 2 - Preparing the Landing Page

Next: Step 4 - Creating a custom block

https://doc.ez.no/display/DEVELOPER/Step+2+-+Preparing+the+Landing+Page
https://doc.ez.no/display/DEVELOPER/Step+4+-+Creating+a+custom+block

	Step 3 - Using existing blocks

