
Managing Content
In the following recipes, you will see how to create Content, including complex fields like XmlText
or Image.

Identifying to the repository with a login and a password

As seen earlier, the Repository executes operations with a user's credentials. In a web context, the
currently logged-in user is automatically identified. In a command line context, you need to
manually log a user in. We have already seen how to manually load and set a user using its ID. If
you would like to identify a user using their username and password instead, this can be achieved
in the following way:

$user = $userService->loadUserByCredentials( $user,
$password );
$repository->setCurrentUser( $user );

Creating content

We will now see how to create Content using the Public API. This example will work with the
default Folder (ID 1) Content Type from eZ Platform.

/** @var $repository
\eZ\Publish\API\Repository\Repository */
$repository = $this->getContainer()->get(
'ezpublish.api.repository' );
$contentService = $repository->getContentService();
$locationService = $repository->getLocationService();
$contentTypeService =
$repository->getContentTypeService();

We first need the required services. In this case: ,  and ContentService LocationService Con
.tentTypeService

The ContentCreateStruct

As explained in , Value Objects are read only. Dedicated objects areeZ Platform Public PHP API
provided for Update and Create operations: structs, like  or ContentCreateStruct UpdateCrea

. In this case, we need to use a . teStruct ContentCreateStruct

In this topic:

Identifying to the repository
with a login and a password
Creating content

The
ContentCreateStruct
Setting the fields
values
Setting the Location
Creating and
publishing

Updating Content
Handling translations
Creating Content containing
an image
Create Content with XML
Text
Deleting Content

authentication

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/CreateContentCo
mmand.php

https://doc.ez.no/display/DEVELOPER/eZ+Platform+Public+PHP+API
https://github.com/ezsystems/CookbookBundle/blob/master/Command/CreateContentCommand.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/CreateContentCommand.php


$contentType =
$contentTypeService->loadContentTypeByIdentifier(
'article' );
$contentCreateStruct =
$contentService->newContentCreateStruct( $contentType,
'eng-GB' );

We first need to get the we want to create a  with. To do so, we use  ContentType Content Cont
, with the wanted  iden entTypeService::loadContentTypeByIdentifier() ContentType

tifier, like 'article'. We finally get a ContentTypeCreateStruct using ContentService::newConte
, providing the Content Type and a Locale Code (eng-GB). ntCreateStruct()

Setting the fields values

$contentCreateStruct->setField( 'title', 'My title' );
$contentCreateStruct->setField( 'intro', $intro );
$contentCreateStruct->setField( 'body', $body );

Using our create struct, we can now set the values for our Content item's Fields, using the setFie
method. For now, we will just set the title.  for a TextLine Field simply expects a ld() setField()

string as input argument. More complex Field Types, like Author or Image, expect different input
values.

Setting the Location

In order to set a Location for our object, we must instantiate a . This is LocationCreateStruct
done with , with the new Location's parentLocationService::newLocationCreateStruct()
ID as an argument.

$locationCreateStruct =
$locationService->newLocationCreateStruct( 2 );

Creating and publishing

To actually create our Content in the Repository, we need to use ContentService::createCon
. This method expects a , as well as a tent() ContentCreateStruct LocationCreateStruct

. We have created both in the previous steps.

$draft = $contentService->createContent(
$contentCreateStruct, array( $locationCreateStruct ) );
$content = $contentService->publishVersion(
$draft->versionInfo );

The method can take several type of ContentCreateStruct::setField()
arguments.

In any case, whatever the Field Type is, a Value of this type can be provided. For
instance, a TextLine\Value can be provided for a TextLine\Type. Depending on the Field
Type implementation itself, more specifically on the  method every FieldfromHash()
Type implements, various arrays can be accepted, as well as primitive types, depending
on the Type.

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/ContentType/ContentType.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentTypeService.html#method_loadContentTypeByIdentifier
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentTypeService.html#method_loadContentTypeByIdentifier
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentService.html#method_newContentCreateStruct
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentService.html#method_newContentCreateStruct
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/ContentCreateStruct.html#method_setField
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/ContentCreateStruct.html#method_setField
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/LocationCreateStruct.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/ContentCreateStruct.html#method_setField


The LocationCreateStruct is provided as an array, since a Content item can have multiple
locations.

createContent()returns a new Content Value Object, with one version that has the DRAFT
status. To make this Content visible, we need to publish it. This is done using ContentService::

. This method expects a  object as its parameter. In our case,publishVersion() VersionInfo
we simply use the current version from , with the  property.$draft versionInfo

Updating Content

We will now see how the previously created Content can be updated. To do so, we will create a
new draft for our Content, update it using a , and publish the updated ContentUpdateStruct
Version.

$contentInfo = $contentService->loadContentInfo(
$contentId );
$contentDraft = $contentService->createContentDraft(
$contentInfo );

To create our draft, we need to load the Content item's ContentInfo using ContentService::loa
. We can then use  to add adContentInfo() ContentService::createContentDraft()

new Draft to our Content.

// instantiate a content update struct and set the new
fields
$contentUpdateStruct =
$contentService->newContentUpdateStruct();
$contentUpdateStruct->initialLanguageCode = 'eng-GB'; //
set language for new version
$contentUpdateStruct->setField( 'title', $newTitle );
$contentUpdateStruct->setField( 'body', $newBody );

To set the new values for this version, we request a  from the ContentUpdateStruct ContentS
 using the  method. Updating the values hasn't changed:ervice newContentUpdateStruct()

we use the  method.setField()

$contentDraft = $contentService->updateContent(
$contentDraft->versionInfo, $contentUpdateStruct );
$content = $contentService->publishVersion(
$contentDraft->versionInfo );

We can now use  to apply our  ContentService::updateContent() ContentUpdateStruct
to our draft's . Publishing is done exactly the same way as for a new content, using VersionInfo

.ContentService::publishVersion()

Handling translations

In the two previous examples, you have seen that we set the ContentUpdateStruct's initialLan
 property. To translate an object to a new language, set the locale to a new one.guageCode

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/UpdateContentC
ommand.php

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Values/Content/ContentUpdateStruct.html
https://github.com/ezsystems/CookbookBundle/blob/master/Command/UpdateContentCommand.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/UpdateContentCommand.php


$contentUpdateStruct->initialLanguageCode = 'ger-DE';
$contentUpdateStruct->setField( 'title', $newtitle );
$contentUpdateStruct->setField( 'body', $newbody );

It is possible to create or update content in multiple languages at once. There is one restriction:
only one language can be set a version's language. This language is the one that will get a flag in
the back office. However, you can set values in other languages for your attributes, using the setF

 method's third argument.ield

// set one language for new version
$contentUpdateStruct->initialLanguageCode = 'fre-FR';

$contentUpdateStruct->setField( 'title',
$newgermantitle, 'ger-DE' );
$contentUpdateStruct->setField( 'body', $newgermanbody,
'ger-DE' );

$contentUpdateStruct->setField( 'title', $newfrenchtitle
);
$contentUpdateStruct->setField( 'body', $newfrenchbody
);

Since we don't specify a locale for the last two fields, they are set for the 's UpdateStruct initia
, fre-FR.lLanguageCode

Creating Content containing an image

As explained above, the  method can accept various values: an instance of the FieldsetField()
Type's Value class, a primitive type, or a hash. The last two depend on what the Type::acceptV

 method is build up to handle. TextLine can, for instance, accept a simple string as an inputalue()
value. In this example, you will see how to set an Image value.

We assume that we use the default image class. Creating our Content, using the Content Type and
a ContentCreateStruct, has been covered above, and can be found in the full code. Let's focus on
how the image is provided.

translating

update multiple languages

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/CreateImageCo
mmand.php

https://github.com/ezsystems/CookbookBundle/blob/master/Command/CreateImageCommand.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/CreateImageCommand.php


$file = '/path/to/image.png';

$value = new \eZ\Publish\Core\FieldType\Image\Value(
    array(
        'path' => '/path/to/image.png',
        'fileSize' => filesize( '/path/to/image.png' ),
        'fileName' => basename( 'image.png' ),
        'alternativeText' => 'My image'
    )
);
$contentCreateStruct->setField( 'image', $value );

This time, we create our image by directly providing an object. The values are Image\Value
directly provided to the constructor using a hash with predetermined keys that depend on each
Type. In this case: the path where the image can be found, its size, the file name, and an
alternative text.

Images also implement a static method that will, given a path to an image, return fromString()
an  object.Image\Value

$value =
\eZ\Publish\Core\FieldType\Image\Value::fromString(
'/path/to/image.png' );

But as said before, whatever you provide  with is sent to the  methosetField() acceptValue()
d. This method really is the entry point to the input formats a Field Type accepts. In this case, you
could have provided setField with either a hash, similar to the one we provided the Image\Value
constructor with, or the path to your image, as a string.

$contentCreateStruct->setField( 'image',
'/path/to/image.png' );
 
// or
 
$contentCreateStruct->setField( 'image', array(
    'path' => '/path/to/image.png',
    'fileSize' => filesize( '/path/to/image.png' ),
    'fileName' => basename( 'image.png' ),
    'alternativeText' => 'My image'
);

Create Content with XML Text

Another very commonly used Field Type is the rich text one, .XmlText

Full code
https://github.com/ezsystems/CookbookBundle/blob/master/Command/CreateXMLConte
ntCommand.php

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/Core/FieldType/Image/Value.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/Core/FieldType/Image/Value.html#method_fromString
https://github.com/ezsystems/CookbookBundle/blob/master/Command/CreateXMLContentCommand.php
https://github.com/ezsystems/CookbookBundle/blob/master/Command/CreateXMLContentCommand.php


$xmlText = <<< EOX
<?xml version='1.0' encoding='utf-8'?>
<section>
<paragraph>This is a <strong>image
test</strong></paragraph>
<paragraph><embed view='embed' size='medium'
object_id='$imageId'/></paragraph>
</section>
EOX;
$contentCreateStruct->setField( 'body', $xmlText );

As for the last example above, we use the multiple formats accepted by , and providesetField()
our XML string as is. The only accepted format as of 5.0 is internal XML, the one stored in the
Legacy database.

We embed an image in our XML, using the  tag, providing an image Content ID as the <embed> ob
 attribute.ject_id

Deleting Content

$contentService->deleteContent( $contentInfo );

 ContentService::deleteContent() method expects a  as an argument. It willContentInfo
delete the given Content item, all of its Locations, as well as all of the Content item's Locations'
descendants and their associated Content.

working with xml text

The XSD for the internal XML representation can be found in the kernel: https://github.co
m/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/Core/FieldType/XmlText/Input/Re

.sources/schemas/ezxml.xsd

Using a custom format as input
More input formats will be added later. The API for that is actually already available: you
simply need to implement the interface. It contains one method,  XmlText\Input getIn

, that must return an internal XML string. Create your own ternalRepresentation()
bundle, add your implementation to it, and use it in your code!

$input = new \My\XmlText\CustomInput( 'My custom
format string' );
$contentCreateStruct->setField( 'body', $input );

Use with caution!

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/ContentService.html#method_deleteContent
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/Core/FieldType/XmlText/Input/Resources/schemas/ezxml.xsd
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/Core/FieldType/XmlText/Input/Resources/schemas/ezxml.xsd
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/Core/FieldType/XmlText/Input/Resources/schemas/ezxml.xsd
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/Core/FieldType/XmlText/Input.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/Core/FieldType/XmlText/Input.html#method_getInternalRepresentation
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/Core/FieldType/XmlText/Input.html#method_getInternalRepresentation

	Managing Content

