
Content view
REWRITE

The ViewController
View selection
Content view templates

Available variables
Template inheritance and sub-requests
Rendering Content item's Fields

Getting raw Field value
Using the Field Type's template block

Rendering Content name
Translated name
Name property in ContentInfo
Exposing additional variables

Making links to other locations
Render embedded content objects

Using ez_content controller
Available arguments

Render block
ESI
Asynchronous rendering

Display a default text
Related topics:

The ViewController

eZ Platform comes with a native controller to display your content, known as the . It is called each time you try to reach aViewController
Content item from its (human readable, translatable URI generated for any content based on URL patterns defined per Content Type)Url Alias
and is able to render any content previously edited in the admin interface or via the .PHP API Tutorials

It can also be called straight by its direct URI : /content/view/<contentId>/<languageCode>

A Content item can also have different (full page, abstract in a list, block in a landing page, etc.). By default the view type is (forview types full
full page), but it can be anything (, .).line block, etc

View selection

To display a Content item, the ViewController uses a view manager which selects the appropriate template depending on matching rules.

Content view templates

A content view template is like any other template, with several specific aspects.

Important note regarding visibility
The Location visibility flag, which you can change by hiding/revealing in the Platform UI, is not permission-based and thus acts as a
simple potential filter. .It is not meant to restrict access to content

If you need to restrict access to a given Content item, use or , which are permission-based.Sections Object states

For more information about the , please .view provider configuration refer to the dedicated page

You can also .use your own custom controller to render a content item/location

https://doc.ez.no/display/TECHDOC/PHP+API+Tutorials
https://doc.ez.no/display/TECHDOC/View+provider+configuration
https://doc.ez.no/display/TECHDOC/How+to+use+a+custom+controller+to+display+a+content+item+or+location

Available variables

Variable name Type Description

location eZ\Publish\Core\Repository\Values\Content\Location The Location object. Contains meta information on the content (Co
)ntentInfo

(only when accessing a Location)

content eZ\Publish\Core\Repository\Values\Content\Content The Content item, containing all Fields and version information (V
)ersionInfo

noLayout Boolean If true, indicates if the Content item/Location is to be displayed
without any pagelayout (i.e. AJAX, sub-requests, etc.).
It's generally when displaying a Content item in view type false f

.ull

viewBaseLayout String The base layout template to use when the view is requested to be
generated outside of the pagelayout (when is true).noLayout

Template inheritance and sub-requests

Like any template, a content view template can use . However keep in mind that your content may be also requested via template inheritance sub-
 (see below how to render embedded content objects), in which case you probably don't want the global layout to be used.requests

If you use different templates for embedded content views, this should not be a problem. If you'd rather use the same template, you can use an
extra view parameter for the sub-request, and conditionally extend an empty pagelayout:noLayout

{% extends noLayout ? viewbaseLayout : "AcmeDemoBundle::pagelayout.html.twig" %}

{% block content %}
...
{% endblock %}

Rendering Content item's Fields

As stated above, a view template receives the requested Content item, holding all Fields.

In order to display the Fields' value the way you want, you can either manipulate the Field Value object itself, or use a custom template.

Getting raw Field value

Having access to the Content item in the template, you can use to access all the information you need. You can also use the its public methods e
 helper to get the . It will return the correct language if there are several, based on language priorities.z_field_value Field value

{# With the following, myFieldValue will be in the content's main language, regardless
of the current language #}
{% set myFieldValue = content.getFieldValue('some_field_identifier') %}

{# Here myTranslatedFieldValue will be in the current language if a translation is
available. If not, the content's main language will be used #}
{% set myTranslatedFieldValue = ez_field_value(content, 'some_field_identifier') %}

Using the Field Type's template block

All built-in Field Types come with . You can render any Field using this default template using the their own Twig template ez_render_field()
helper.

https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/Location.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/Content.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/ContentInfo.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/ContentInfo.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/Content.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/VersionInfo.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/VersionInfo.php
http://symfony.com/doc/current/book/templating.html#template-inheritance-and-layouts
http://symfony.com/doc/current/book/templating.html#embedding-controllers
http://symfony.com/doc/current/book/templating.html#embedding-controllers
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Publish/Core/Repository/Values/Content/Content.php
https://doc.ez.no/display/TECHDOC/ez_field_value
https://doc.ez.no/display/TECHDOC/ez_field_value
https://doc.ez.no/display/EZP/FieldTypes+reference
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Bundle/EzPublishCoreBundle/Resources/views/content_fields.html.twig

{{ ez_render_field(content, 'some_field_identifier') }}

Refer to for further information. reference pageez_render_field()

Rendering Content name

The of a Content item is its generic "title", generated by the repository based on the Content Type's naming pattern. It often takes the formname
of a normalized value of the first field, but might be a concatenation of several fields. There are 2 different ways to access to this special property:

Through the name property of ContentInfo (not translated).
Through VersionInfo with the TranslationHelper (translated).

Translated name

The is held in a object, in the names property which consists of hash indexed by locale. You can easily retrieve ittranslated name VersionInfo
in the right language via the service.TranslationHelper

<h2>Translated content name: {{ ez_content_name(content) }}</h2>
<h3>Also works from ContentInfo : {{ ez_content_name(content.contentInfo) }}</h3>

The helper will by default follow the prioritized languages order. If there is no translation for your prioritized languages, the helper will always
return the name in the main language.

You can also in a second argument:force a locale

{# Force fre-FR locale. #}
<h2>{{ ez_content_name(content, 'fre-FR') }}</h2>

You can refer to for further information.ez_content_name() reference page

Name property in ContentInfo

This property is the actual content name, but (so it is not translated).in main language only

<h2>Content name: {{ content.contentInfo.name }}</h2>

$contentName = $content->contentInfo->name;

Exposing additional variables

It is possible to expose additional variables in a content view template. See or parameters injection in content views using your own custom
.controller to render a content item/location

Making links to other locations

As this makes use of reusable templates, using is the recommended way and is to be considered the bestez_render_field()
.practice

https://doc.ez.no/display/TECHDOC/ez_render_field
https://doc.ez.no/display/TECHDOC/ez_content_name
https://doc.ez.no/display/TECHDOC/Parameters+injection+in+content+views
https://doc.ez.no/display/TECHDOC/How+to+use+a+custom+controller+to+display+a+content+item+or+location
https://doc.ez.no/display/TECHDOC/How+to+use+a+custom+controller+to+display+a+content+item+or+location

Linking to other locations is fairly easy and is done with a (or if you want to generate absolute URLs). You justnative Twig helperpath() url()
have to pass it the Location object and will generate the URLAlias for you.path()

{# Assuming "location" variable is a valid
eZ\Publish\API\Repository\Values\Content\Location object #}
Some link to a location

If you don't have the Location object, but only its ID, you can generate the URLAlias the following way:

Some link to a location,
with its Id only

You can also use the Content ID. In that case the generated link will point to the Content item's main Location.

Some link from a
contentId

See also: Cross-siteaccess links

Render embedded content objects

Rendering an embedded content from a Twig template is pretty straight forward as you just need to do a subrequest with controllez_content
.er

Using controllerez_content

This controller is exactly the same as . It has one main , that renders a Content item.the ViewController presented above viewAction

You can use this controller from templates with the following syntax:

{{ render(controller("ez_content:viewAction", {"contentId": 123, "viewType": "line"}
)) }}

The example above renders the Content whose ID is , with the view type .123 line

Available arguments

As with any controller, you can pass arguments to or to fit your needs.ez_content:viewLocation ez_content:viewContent

Name Description Type Default value

contentId ID of the Content item you want to render.
 Only for ez_content:viewContent

integer N/A

Under the hood
In the backend, uses the Router to generate links.path()

This makes it also easy to generate links from PHP, via the service.router

Reference of controller follows the syntax of , .ez_content controllers as a service as explained in Symfony documentation

http://symfony.com/doc/2.3/book/templating.html#linking-to-pages
https://doc.ez.no/display/TECHDOC/Cross-siteaccess+links
http://symfony.com/doc/current/cookbook/controller/service.html

locationId ID of the Location you want to render.
 Only for ez_content:viewLocation

integer Content item's main location, if
defined

viewType The view type you want to render your Content item/Location in.
Will be used by the ViewManager to select a corresponding template, according to defined rules.

Example: full, line, my_custom_view, etc.

string full

layout Indicates if the sub-view needs to use the main layout (see)available variables in a view template

boolean false

params Hash of variables you want to inject to sub-template, key being the exposed variable name.

{{ render(
 controller(
 "ez_content:viewAction",
 {
 "contentId": 123,
 "viewType": "line",
 "params": { "some_variable":
"some_value" }
 }
)
) }}

hash empty hash

Render block

You can specify which controller will be called for a specific block view match, much like defining custom controllers for location view or content
view match.

Also, since there are two possible actions with which one can view a block: and , it is possibleez_page:viewBlock ez_page:viewBlockById
to specify a controller action with a signature matching either one of the original actions.

Example of configuration in :app/config/ezplatform.yml

ezpublish:
 system:
 eng_frontend_group:
 block_view:
 ContentGrid:
 template: NetgenSiteBundle:block:content_grid.html.twig
 controller: NetgenSiteBundle:Block:viewContentGridBlock
 match:
 Type: ContentGrid

ESI

Just as for regular Symfony controllers, you can take advantage of ESI and use different cache levels:

{{ render_esi(controller("ez_content:viewAction", {"contentId": 123, "viewType":
"line"})) }}

Using ESI

Asynchronous rendering

Symfony also supports asynchronous content rendering with the help of library.hinclude.js

{{ render_hinclude(controller("ez_content:viewAction", {"contentId": 123,
"viewType": "line"})) }}

Display a default text

If you want to display a default text while a controller is loaded asynchronously, you have to pass a second parameter to your render_hinclude
twig function.

{{ render_hinclude(controller('EzCorporateDesignBundle:Header:userLinks'), {
'default': "<div style='color:red'>loading</div>" }) }}

See also: How to use a custom controller to display a content item or location

Related topics:

View provider configuration
Default view templates
Parameters injection in content views
How to use a custom controller to display a content item or location

Only scalable variables can be sent via render_esi (not object)

Asynchronous rendering

Only scalable variables can be sent via render_hinclude (not object)

Display a default text during asynchronous loading of a controller

hinclude.js needs to be properly included in your layout to work.

Please for all available options.refer to Symfony documentation

http://mnot.github.com/hinclude/
https://doc.ez.no/display/TECHDOC/How+to+use+a+custom+controller+to+display+a+content+item+or+location
https://doc.ez.no/display/TECHDOC/View+provider+configuration
https://doc.ez.no/display/TECHDOC/Default+view+templates
https://doc.ez.no/display/TECHDOC/Parameters+injection+in+content+views
https://doc.ez.no/display/TECHDOC/How+to+use+a+custom+controller+to+display+a+content+item+or+location
http://mnot.github.com/hinclude/
http://symfony.com/doc/current/book/templating.html#asynchronous-content-with-hinclude-js

	Content view

