
Build the content list
Two ways to generate pages in PlatformUI
Browser side rendering

View service to fetch the Location list
Minimal view service
Configure the route to use the view service
Fetching Locations from the view service
Passing the Location to the view

View to display a list of Location
Server side rendering

View service to fetch an HTML fragment
Minimal view service
Configure the route to use the view service
Generate the HTML fragment server side
Update the view service to fetch the generated HTML fragment

View to handle the server side generated code
Change the view to be server side view
Navigating in the app from the view

Two ways to generate pages in PlatformUI

As written in , pages in PlatformUI can be generated either by the browser based on the REST API (or anythe PlatformUI technical introduction
other API) responses or by doing part of the rendering on the server side for instance with some Twig templates called by a Symfony controller.
Both options are perfectly valid and choosing one or the other is mainly a matter of taste. This step will examine both strategies even if the later
steps will be based on the server side rendering.

Browser side rendering

In this case, the browser uses the REST API to fetch the necessary objects/structures and then the logic of transforming that to an HTML page is
written in JavaScript and executed by the browser.

View service to fetch the Location list

Minimal view service

The first thing to do is to create a view service. A view service is a component extending . So we first need to declare andY.eZ.ViewService
create a module and then this module will create the minimal view service class:

ezconf-listviewservice:
 requires: ['ez-viewservice']
 path:
%extending_platformui.public_dir%/js/views/services/ezconf-listviewservice.js

Then in we can write the minimal view service:ezconf-listviewservice.js

yui.yml

https://doc.ez.no/display/TECHDOC/Backend+interface

YUI.add('ezconf-listviewservice', function (Y) {
 Y.namespace('eZConf');

 Y.eZConf.ListViewService = Y.Base.create('ezconfListViewService',
Y.eZ.ViewService, [], {
 initializer: function () {
 console.log("Hey, I'm the ListViewService");
 },
 });
});

This is the minimal view service, it only writes a "hello world" message in the console when instantiated but for now it's not used anywhere in the
application.

Configure the route to use the view service

To really use our view service in the application, we have to change the route so that the PlatformUI application instantiates and uses the view
service when building the page. To do that, we have to add the route property to hold the constructor function of the view service so theservice
application plugin that adds the route will also have to require the module:ezconf-listviewservice

 ezconf-listapplugin:
 requires: ['ez-pluginregistry', 'plugin', 'base', 'ezconf-listview',
'ezconf-listviewservice'] # the view module has been added
 dependencyOf: ['ez-platformuiapp']

After doing that, becomes available in the application plugin code and we can change the route to:Y.eZConf.ListViewService eZConfList

app.route({
 name: "eZConfList",
 path: "/ezconf/list",
 view: "ezconfListView",
 service: Y.eZConf.ListViewService, // constructor function to use to instantiate
the view service
 sideViews: {'navigationHub': true, 'discoveryBar': false},
 callbacks: ['open', 'checkUser', 'handleSideViews', 'handleMainView'],
});

After this change, the is used when a user reaches the route.Y.eZConf.ListViewService eZConfList

Fetching Locations from the view service

A view service is responsible for fetching data so it can be rendered. For a given route, the view service is instantiated the first time the route is
accessed and then the same instance is reused. On that instance, the method is automatically called. This is where the loading logic_load
should be in most cases. This method also receives a callback as its only parameter. This callback function should be called once the loading is
finished. Typically, a view service will use to request . To do that, a JavaScript REST Clientthe JavaScript REST Client the eZ Platform REST API
instance is available in the attribute of the view service.capi

Minimal ListViewService

yui.yml

Creating a route with a view service

http://ezsystems.github.io/javascript-rest-client/
https://doc.ez.no/display/TECHDOC/REST+API+Tutorials

In this tutorial, we want to display the Content in a flat list and filter this list by Content Types. For now, let's fetch everything; to do that, the view
service will create a REST view to search for every Location in the repository:

YUI.add('ezconf-listviewservice', function (Y) {
 Y.namespace('eZConf');

 Y.eZConf.ListViewService = Y.Base.create('ezconfListViewService',
Y.eZ.ViewService, [], {
 initializer: function () {
 console.log("Hey, I'm the ListViewService");
 },

 // _load is automatically called when the view service is configured for
 // a route. callback should be executed when everything is finished
 _load: function (callback) {
 var capi = this.get('capi'), // REST API JavaScript client
 contentService = capi.getContentService(),
 query = contentService.newViewCreateStruct('ezconf-list',
'LocationQuery');

 // searching for "everything"
 query.body.ViewInput.LocationQuery.Criteria = {SubtreeCriterion: "/1/"};
 contentService.createView(query, Y.bind(function (err, response) {
 // parsing the response and storing the location list in the
"location" attribute
 var locations;

 locations =
Y.Array.map(response.document.View.Result.searchHits.searchHit, function (hit) {
 var loc = new Y.eZ.Location({id: hit.value.Location._href});

 loc.loadFromHash(hit.value.Location);
 return loc;
 });
 this.set('locations', locations);
 callback();
 }, this));
 },
 }, {
 ATTRS: {
 locations: {
 value: [],
 }
 }
 });
});

At this point, if you refresh the PlatformUI application and follow the link added , you should see a new REST API request to in the previous step /
 in the network panel of the browser:api/ezp/v2/views

ezconf-listviewservice.js

https://doc.ez.no/display/TECHDOC/Configure+the+navigation

1.

2.

The Locations are built in the application but not yet used anywhere.

Passing the Location to the view

Now that we have the Locations, we have to give them to the view. For that, we have to implement the method in the_getViewParameters
view service. This method is automatically called when view service loading is finished, it should return an object that will be used as a
configuration object for the main view.

In our case, we just want to give the Location list to the view, so the method is quite simple:_getViewParameters

_getViewParameters: function () {
 return {
 locations: this.get('locations'),
 };
},

With that code, the view will receive the Location list as an attribute under the name .locations

View to display a list of Location

The view now receives the Location list in the attribute so we have to change the view to take that into account. For now, let's changelocations
it to just display the Location it receives as an unordered HTML list of links to those Locations. To do that, we have to:

Declare the attribute in the viewlocations

_getViewParameters of the view service

Why implement _load and _getViewParameters and not load and getViewParameters?
When implementing a custom view service, you should always implement the protected and methods,_load _getViewParameters
not their public counterparts and . By implementing the protected versions, you keep the opportunity for aload getViewParameters
developer to write a plugin to enhance your view service.

2.
3.

Give that list to the template in a form it can understand
Update the template to generate the list

Point 2 is required because Handlebars is not able to understand the complex model objects generated by YUI. So we have to transform those
complex object into plain JavaScript objects. After doing the changes in steps 1 and 2, the view looks like this:

YUI.add('ezconf-listview', function (Y) {
 Y.namespace('eZConf');

 Y.eZConf.ListView = Y.Base.create('ezconfListView', Y.eZ.TemplateBasedView, [], {
 initializer: function () {
 console.log("Hey, I'm the list view");
 },

 render: function () {
 this.get('container').setHTML(
 this.template({
 locations: this._getJsonifiedLocations(),
 })
);
 return this;
 },

 _getJsonifiedLocations: function () {
 // to get usable objects in the template
 return Y.Array.map(this.get('locations'), function (loc) {
 return loc.toJSON();
 });
 },
 }, {
 ATTRS: {
 locations: {
 value: [],
 }
 }
 });
});

Then the template has to be changed to something like:

<h1 class="ezconf-list-title">List view</h1>

<ul class="ezconf-list">
{{#each locations}}
 <a href="{{path 'viewLocation' id=id
languageCode=contentInfo.mainLanguageCode}}">{{ contentInfo.name }}
{{/each}}

PlatformUI provides a template helper that allows you to generate a route URL in PlatformUI. It expects a route name and the routepath
parameters.

ezconf-listview.js

ezconflistview.hbt

Server side rendering

In this case a part of the rendering is delegated to the server. When building a PlatformUI page this way, the application will just do one or more
AJAX request(s) and inject the result in the UI. The PlatformUI is built this way. To be easily usable in the JavaScript application, theAdmin part
server response has to be structured so that the application can retrieve and set the page title, the potential notifications to issue and the actual
page content. This is done by generating an HTML fragment, in the following way:

<div data-name="title">Title to set in the application</div>
<div data-name="html">
 <p>Page content</p>
</div>
<ul data-name="notification">
 <li data-state="done">I'm a "done" notification to display in the application

View service to fetch an HTML fragment

Minimal view service

In the case, the minimal view service is exactly the same as the one produced in .the previous Minimal view service paragraph

Configure the route to use the view service

The eZConfList route also has to be configured exactly in the same way as in .the previous Configure the route to use the view service paragraph

Generate the HTML fragment server side

This will be done by a Symfony Controller that will use the Search Service and a Twig template to generate the HTML code. As you can see in thi
, it's a very basic Symfony Controller that extends .s Github commit EzSystems\PlatformUIBundle\Controller\Controller

The action in uses the following Twig template:list ListController

Results
The resulting code can be been in , this step result can also be viewed as the tag on GitHub6_1_list_client a diff between tags 5_

. and navigation 6_1_list_client

The rest of this tutorial is focused on the server side rendering strategy. Completing the browser side rendering strategy to get the
expected features is left as an exercise.

Example of server side response

Extending is not strictly required. By doing that, the actions providedEzSystems\PlatformUIBundle\Controller\Controller
by the controller are automatically restricted to authenticated users. This base controller also provides the base API to handle
notifications if needed.

To learn how to write Symfony controllers, please read .the Symfony Controller documentation

https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/commit/01c43cee899e295109060ab89a7ea705e8171cd0#diff-2e1a19129e23e2d757512a5da45ffa54R1
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/commit/01c43cee899e295109060ab89a7ea705e8171cd0#diff-2e1a19129e23e2d757512a5da45ffa54R1
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/releases/tag/6_1_list_client
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/compare/5_navigation...6_1_list_client
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/compare/5_navigation...6_1_list_client
http://symfony.com/doc/current/book/controller.html

{% extends "eZPlatformUIBundle::pjax_admin.html.twig" %}

{% block header_title %}
 <h1 class="ezconf-list-title">List view</h1>
{% endblock %}

{% block content %}
<ul class="ezconf-list">
{% for value in results.searchHits %}
 {{ value.valueObject.contentInfo.name }}
{% endfor %}

{% endblock %}

{% block title %}List{% endblock %}

Again, it's a quite a regular template but to ease the generation of the expected structured HTML fragment, this template extends eZPlatformU
 and redefines a few blocks, the main one being where the actual page content is supposed toIBundle::pjax_admin.html.twig content

be generated.

Update the view service to fetch the generated HTML fragment

We now have a Symfony Controller able to generate our Location list but this list is not yet available in the application. As in Fetching Locations
 and , we have to add the code in the view service. But in the case of a server sidefrom the view service Passing the Location to the view

rendering, we can reuse . .Y eZ which provides the base API to parse an HTML fragment which also provides aServerSideViewService
ready to use method. All we have to do then is to implement the loading logic in :_getViewParameters _load

list.html.twig

https://github.com/ezsystems/PlatformUIBundle/blob/master/Resources/views/pjax_admin.html.twig
https://github.com/ezsystems/PlatformUIBundle/blob/master/Resources/views/pjax_admin.html.twig
http://doc.ez.no#Buildthecontentlist-PassingtheLocationtotheview

YUI.add('ezconf-listviewservice', function (Y) {
 Y.namespace('eZConf');

 Y.eZConf.ListViewService = Y.Base.create('ezconfListViewService',
Y.eZ.ServerSideViewService, [], {
 initializer: function () {
 console.log("Hey, I'm the ListViewService");
 },

 _load: function (callback) {
 var uri = this.get('app').get('apiRoot') + 'list';

 Y.io(uri, { // YUI helper to do AJAX request, see
http://yuilibrary.com/yui/docs/io/
 method: 'GET',
 on: {
 success: function (tId, response) {
 this._parseResponse(response); // provided by
Y.eZ.ServerSideViewService
 callback(this);
 },
 failure: this._handleLoadFailure, // provided by
Y.eZ.ServerSideViewService
 },
 context: this,
 });
 },
 });
});

The resulting method will just do an AJAX request to the action provided by our Symfony controller._load

At this point, if you refresh your browser, nothing should have changed but you should see the AJAX request in the network panel of your
browser.

ezconf-listviewservice.js

View to handle the server side generated code

Change the view to be server side view

To have a visual change, we now have to change the to be a server side view. This operations involves removing some code added inListView
. Basically, the View does not need any template but it will inherit from . As a result, the viewthe Define a View step Y.eZ.ServerSideView

module definition becomes:

ezconf-listview:
 requires: ['ez-serversideview']
 path: %extending_platformui.public_dir%/js/views/ezconf-listview.js

And the View component also has to be simplified to:

YUI.add('ezconf-listview', function (Y) {
 Y.namespace('eZConf');

 Y.eZConf.ListView = Y.Base.create('ezconfListView', Y.eZ.ServerSideView, [], {
 initializer: function () {
 console.log("Hey, I'm the list view");
 this.containerTemplate = '<div class="ez-view-ezconflistview"/>'; // make
sure we keep the same class on the container
 },
 });
});

At this point, you should see the same list as the one that was generated in section. The only difference lies in theBrowser side rendering
non-working links being generated in the server side solution.

Navigating in the app from the view

There are several ways to fix the link issue. In this step we are going to add some metadata to the generated HTML links, then we'll change the
view to recognize the enhanced links and finally we'll change the server side view to achieve the navigation.

The server side code has no knowledge of the JavaScript application routing mechanism as a result, it can not directly generate any PlatformUI
Application URI, but we know while generating the HTML fragment that we want each link to allow the navigation to the route forviewLocation
the Location being displayed. We can then change the Twig template to add the necessary metadata on each link so that the application has a
way of guessing where the user is supposed to go when clicking on the link:

View module definition

ezconf-listview.js

https://doc.ez.no/display/TECHDOC/Define+a+View

{% block content %}
<ul class="ezconf-list">
{% for value in results.searchHits %}
 <a class="ezconf-list-location" href=""
 data-route-name="viewLocation"
 data-route-id="{{ path('ezpublish_rest_loadLocation', {locationPath:
value.valueObject.pathString|trim('/')}) }}"
 data-route-languageCode="{{ value.valueObject.contentInfo.mainLanguageCode }}"
 >{{ value.valueObject.contentInfo.name }}
{% endfor %}

{% endblock %}

For each link we are basically saying to the application that the user should directed to the route for the given Location id and theviewLocation
given language code.

Then we have to change the view to add a special behavior when the user clicks on them. The view can not directly trigger the navigation to the
expected route. So in this case, we are firing an application level event with all the data we have on the link and we'll let the view service handle
this application level event to take the user to the expected page. So, we have to configure our view to recognize the click on the links and to fire
the custom event:navigateTo

"content" block in the Twig template

In PlatformUI code, the Locations, Content items and Content Types are identified by their REST id, that is the REST resource URL
which allows you to fetch the object in the REST API. That's why we are using the Twig template function to build the Location id.path

YUI.add('ezconf-listview', function (Y) {
 Y.namespace('eZConf');

 Y.eZConf.ListView = Y.Base.create('ezconfListView', Y.eZ.ServerSideView, [], {
 // this is YUI View mechanic to subscribe to DOM events (click, submit,
 // ...) and synthetic event (some custom event provided by YUI) like
 // 'tap' here.
 events: {
 '.ezconf-list-location': {
 // tap is 'fast click' (touch friendly)
 'tap': '_navigateToLocation'
 }
 },

 initializer: function () {
 console.log("Hey, I'm the list view");
 this.containerTemplate = '<div class="ez-view-ezconflistview"/>';
 },

 _navigateToLocation: function (e) {
 var link = e.target;

 e.preventDefault(); // don't want the normal link behavior

 // tell the view service we want to navigate somewhere
 // it's a custom event that will be bubble up to the view service
 // (and the app)
 // the second parameter is the data to add in the event facade, this
 // can be used by any event handler function bound to this event.
 this.fire('navigateTo', {
 routeName: link.getData('route-name'),
 routeParams: {
 id: link.getData('route-id'),
 languageCode: link.getData('route-languagecode'),
 }
 });
 },
 });
});

Now the click on the Location link is transformed in a event, we have to subscribe to that event in the view service to trigger thenavigateTo
expected navigation:

ezconf-listview.js

The DOM event handling is one of the main YUI View features. It is documented in .the YUI View guide

http://yuilibrary.com/yui/docs/view/#handling-dom-events

YUI.add('ezconf-listviewservice', function (Y) {
 Y.namespace('eZConf');

 Y.eZConf.ListViewService = Y.Base.create('ezconfListViewService',
Y.eZ.ServerSideViewService, [], {
 initializer: function () {
 console.log("Hey, I'm the ListViewService");

 // we catch the `navigateTo` event no matter from where it comes
 // when bubbling, the event is prefixed with the name of the
 // component which fired the event first.
 // so in this case we could also write
 // this.on('ezconflistview:navigateTo', function (e) {});
 // `e` is the event facade. It contains various informations about
 // the event and if any the custom data passed to fire().
 this.on('*:navigateTo', function (e) {
 this.get('app').navigateTo(
 e.routeName,
 e.routeParams
);
 });
 },

 _load: function (callback) {
 // [...] skip to keep the example short
 },
 });
});

With that in place and after a refresh, the Location list should allow you to the navigate to the expected Location in PlatformUI.

ezconf-listviewservice.js

Application level events
PlatformUI uses a lot of custom application level events thanks to . Those events are very similar to the EventTarget YUI component DO

 but they are attached to the application components instead of the DOM elements. Like for DOM events, there is M events a bubbling
. For instance, here the view is firing an event and unless the propagation of the event is stopped, it will bubble to the viewmechanism

service and then to the application. The event basically follows . the components tree until the application An application level event is
way for a deeply nested component to communicate with a higher level component.

Results and next step
The resulting code can be seen in , this step result can also be viewed as the tag on GitHub6_2_list_server a diff between tags 5_

. and navigation 6_2_list_server

The next step is then .to add the pagination

http://yuilibrary.com/yui/docs/event-custom/
http://yuilibrary.com/yui/docs/event/
http://yuilibrary.com/yui/docs/event/
http://yuilibrary.com/yui/docs/event-custom/#bubbling
http://yuilibrary.com/yui/docs/event-custom/#bubbling
https://doc.ez.no/display/TECHDOC/Backend+interface
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/releases/tag/6_2_list_server
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/compare/5_navigation...6_2_list_server
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/compare/5_navigation...6_2_list_server
https://doc.ez.no/display/TECHDOC/Pagination

	Build the content list

