Backend interface

The backend interface is produced by the PlatformUl Bundle which provides a JavaScript Single Page Application based on the YUl App
Framework. This application is accessible in your browser at http://[uri_of_platform]/ez.

® Technical architecture
® Views: main view, sub-view, side view
® Main view
® Sub-view
® Side view
® View services
® How are pages generated?
® Browser side rendering
® Server side rendering
® Ul Components
® Navigation hub
® Bar views: Discovery Bar View, Action Bar View, Edit Action Bar View
® Universal Discovery Widget

Technical architecture

The PlatformUI application code is divided into different types of components:

® Application: this is the top level component, the PlatformUI application is an instance of it. It is responsible for authenticating the user
and for handling the routing.

® Models: models are the main objects handled by the application, they represent our main domain objects (Content, Location, Content
Type, etc.)

® View services: view services act between the Application and the Views. They are configured on the routes and the main responsibility
of a view service is to provide the model (or other data) to the views and to perform the operations requested by the user (removing a
Content item, copying, etc.)

® Views: views generate the user interface and handle the user interaction (clicking, form submitting, etc.). A view can have several
sub-views which can have further sub-views themselves.

® Plugins: plugins can enhance the application, the view services or the views for instance to provide additional features or to tweak the
behavior of the plugged component.

The following chart depicts the interaction between those components:

App Plugin 1

PlatformUl Application App Plugin n

Route Route 2

View service 1 View service 2 View service n
H H
Models

View 2
Sub view Sub view Sub view
/ e 1 H
: :
Sub view

Views: main view, sub-view, side view

https://doc.ez.no/display/TECHDOC/PlatformUI+Bundle
http://yuilibrary.com/yui/docs/app/
http://yuilibrary.com/yui/docs/app/

The views represent a large part of the application and each of them can be used in three different contexts:

1. As the main view
2. As a sub-view of another (sub-)view
3. As a side view

Main view

A view used as a main view is configured at the route level to be displayed when the user navigates to that route.

For instance, when reaching / ez, the user is redirected to the | ogi nFor mroute (/ ez#/ | ogi n) and this route is configured in the following way
in the application component:

{
nane: "l ogi nForni,
path: "/l ogin",
service: Y.eZ. Logi nFornVi ewServi ce,
sideViews: {'navigationHub': false, 'discoveryBar': false},
view. 'l oginFornView ,
cal | backs: ['open', 'handl eSideViews', 'handl eMai nView]
}

Among others things, this means the view | ogi nFor mvi ew will be used as the main view when this route is matched. | ogi nFor mVi ewis
actually the identifier of the view metadata registered in the vi ew property of the Application.

Sub-view

To avoid having huge main views doing too many things in the application, the views are divided into smaller parts called sub-views.

Minimize

HomePage / Getting Started

O Getting Started

Edit
View Details Locations Related content Move

Copy
Content English (United Kingdom)

Translations

Name Getting Started

Layout [object Object]
Sub-items (3)
Name Visibility Published Modified Priority
. 2013-01- 2013-01-
. el 22714:02:10.000Z 22715:15:17.000Z 2
. 2012-03- 2012-03-
Resources Visible 28T12:11:37.000Z 28T12:11:37.000Z 0
Selected . 2012-03- 2012-03- ;
Features 28710:54:34.000Z 28712:23:32.000Z

For instance, the view used to display a Location is divided into several views at several levels, it contains:

http://yuilibrary.com/yui/docs/app/#declaring-views

® An action bar view for the right toolbar, which contains:
® aview for the Minimize button
® aview for the Create button which contains:
® aview to list and select a Content Type

® aview for the Edit button
[J

® A Location View tab view which contains:
® the Raw Content View to display the fields which contains:
® A view for each fields
L]
® A Location Details tab view

® A sub-item list view

Side view

A view can also be used as a side view. As its name suggests a side view can represent anything that is not part of the main view.

For instance, when displaying a Location, the top menu (the Navigation hub) or the left toolbar (the Discovery Bar) are side views.

Administrator U:
m eZ Content Page . Performance # Admin Panel mintstra TOQ:I

Content structure Media library List contents

Minimize Minimize
HomePage / Getting Started
Content tree : Create
O Getting Started
Edit
View Details Locations Related content Move
Copy
Content English (United Kingdom)
Translations
English (L
Name Getting Started Send to Trash

Layout [object Object]

Sub-items (3)

Name Visibility Published Modified Priority

2013-01- 2013-01-

Al e 22T14:02:10.000Z ~ 22T15:15:17.000Z

0

The side views are also used for various widgets providing a service used several times in the application, such as the Universal Discovery
Widget.

View services

The view services act between the Application and the Views for both the main views and the side views. They are responsible for providing the
required data needed by a main view or a side view to be rendered. A view service will also receive the events triggered by the view to react or
provide the additional data. For that, the view services receive an instance of the JavaScript REST Client.

How are pages generated?

Depending on the part of the PlatformUl Application you are using, the page may be generated in two different ways. From an end-user
perspective, this is almost transparent but as a developer it is important to understand how the page is generated to be able to extend it.

Browser side rendering

The pages in the content part (as opposed to admin related pages) are fully rendered in the browser. For instance, when displaying a Location in
PlatformUlI, the corresponding view service loads the Location model and the related models (Content, Content Type, etc.) with the eZ Platform
REST API (through the JavaScript REST Client) and gives them the LocationView to be displayed directly by this view and/or by its sub-views. If
you open the browser developer tools in the network panel, you can see the REST requests needed to build the page and they only contain a
JSON structure.

= O Elements Console Sources Network Timeline Profiles Resources Audits PageSpeed React :
[IO B | View: == "= Preserve log Disable cache No throttling v
Hide dataURLs All Bi3: J5 €55 Img Media Font Doc WS Other
Mame . . o
Path ® Headers Preview Response Cookies Timing
s2 fcontent/locations/1 : “Content”: {
’ ! ’ 3 " media-type": "application‘/vnd.ez.api.Content+json”,
4 " _href®: "\Japi\/ezp\/v2\/content\/objects\ /88",
I . " 5 " remoteld": "c62cbcdbe226d3cTcT3T9ebcd9efThaT",
fcontent/locations/ , wTiam.
6 _id": a8,
90 7 "ContentType": {
T L o ; e 8 " media-type": "application’/vnd.ez.api.ContentType+]jsor
L /apifezp/v2/content/locations/1/2 9 "_href": "\Japi/ezp\/w2\/content\/types\/17"
BBManguages=eng-GB }:’ ?'r'tiarne " "Blog",
Japifezp/v2 fcontent/objects 12 "Versions": {
. 13 " media-type": "application\/vnd.ez.api.VersionList+jsor
“‘wews 14 " href": "\Japi\/ezp\/v2\/content'/objects\/B8\/version:
L fapif 15 T
- ("CurrentVersion": {
| 17 17 " media-type": "application\/vnd.ez.api.Version+json”,
L /apifezp/v2/content/types 18 " _href": "\Japi\/ezp\/v2\/contenth/objects\/B88\/currenty
9 "Version": {
views] " _media-type": "applicatiom\/vnd.ez.api.Version+jsor
j Japifezp/v2 21 " href®: "\Japi\/ezp\/v2\/content /objects\/8B\ /ver:
o : 2 "WersionInfe": {
= 23 "id": 733,
| _— 24 "wversionMo®: 2,
- o 25 "status™: "PUBLISHED",
6 "modificationDate": "2015-12-04T10:42:19+01:808",
. . 27 "Creator": {
fcontent/objects 28 " media-type": "application\/vnd.ez.api.Use:
29 "_href®: "\fapiv/ezp\/v2\/useri/usersh/14"
. 38 Fe
fcontent/objects 88 31 "creationDate”: "2015-12-04T18:42:18+81:00",
32 "initiallanguageCode": "eng-GB",
§‘ 33 "languageCodes": "eng-GB",
L /fapifezpfv2 34 "names": {
35 "walue™: [
11 requests | 92.5 KB transferred 36 3

Server side rendering

The pages in the admin are build in a more traditional way as they are partly rendered server side. For those pages, the view service fetches one
(or several) HTML fragment(s) from the server. This HTML fragment follows a very simple structure and can be generated by any means on the
server and of course, in PlatformUI this is done in a quite standard Symfony controller. By opening the browser developer tools in the network
panel you can see the requests needed to build the section list page.

m O Elements Console Sources Network Timeline Profiles Resources Audits PageSpeed React H

® O W Y | view IE = Preserve log ([Disable cache | Nothrottling ¥

HidedataURLs aAll £33 JS €55 Img Media Font Doc WS Other

® Headers Preview Response Cookies Timing

2 fcantent/locations/1 ; «!-- START eZPlatformUIBundle:Section:list.himl.twig --=
? =!-- START eZPlatformUIBundle::pjax admin.html.twig --=
flocations/1 % =div data-name="title"=Sections</div=
lis!: . ; <div data-name="html"=
[piax/section] =header class="ez-page-header"s

11| <!-- START eZPlatformUIBundle:components:breadcrumbs.html.twig -->
12| =<nav class="ez-breadcrumbs"=>

13 =ul class="ez-breadcrumbs-list"=
14 <li class="ez-breadcrumbs-item"=
15 =a href="/pjax/dashboard"=Admini
16 =/1li=
17 =li class="ez-breadcrumbs-item"=
18 Sections
19 </li=
20 </ul=
21| </nav=
22
23
24| =!-- STOP eZPlatformUIBundle:components:breadcrumbs.html.twig -->
25
26
27 =hl class="ez-page-header-name" data-icon="ëla;"=5e
28 =/header=
29 <section class="ez-serverside-content">
30 =div class="ez-table-data is-flexible"=
31 <div class="ez-table-data-container"=
32 =table class="pure-table pure-table-striped ez-sele:
33 <thead=
34 <tr=
35 =th=Section name=/th=
3requests | 9.1 KB transferred 36 »

Ul Components

Navigation hub

The Navigation Hub is a side view displaying the top menu.

Administrator User

Admin Panel
Performance £ Admin Pane Logout

mez Content Page

Content structure Media library

It displays 4 Navigation zones:

® Content

®* Page

® Performance

® Admin Panel

A zone can contain an arbitrary number of Navigation zone items. By default, the Content zone has 2 navigation items: Content structure and M
edia library.

Bar views: Discovery Bar View, Action Bar View, Edit Action Bar View

Bar views provide a set of potential actions for the user.

Page

Media library

m eZ Content

Content structure List contents

Minimize

HomePage / Getting Started

Content tree

View Details
Content
Name
Layout

Sub-items (3)

Name Visibility
Feedback Visible
Resources Visible
Selected Visible
Features

. Performance

Locations

O Getting Started

Getting Started

[object Object]

Published

2013-01-
22T14:02:10.000Z

2012-03-
28T12:11:37.000Z

2012-03-
28T10:54:34.000Z

'ﬂ' Admin Panel

Related content

English (United Kingdom})

Modified

2013-01-
22T15:15:17.000Z

2012-03-
28T12:11:37.000Z

2012-03-
28T12:23:32.000Z

Administrator User
Logout

Minimize

Edit

Move

Copy

Translations

Priority

0

When navigating in the Content zone, the Discovery Bar View allows you to discover content while the Action Bar View on the right allows you
to act on the Content item being viewed (edit, move, copy, etc.).

When editing a Content item, the Edit Action Bar View on the right allows you to act on the Content item being edited.

Universal Discovery Widget

Select the location where you want to create new location

Browse Search
Content tree

» O HomePage
» O Users
» [Media
» O setup
» [Design

Confirmed items:
No confirmed content yet.

Cancel

Confirm selection

The Universal Discovery Widget is a side view triggered when the user needs to pick a Content item (or a Location). It can provide several Discov
ery Methods. By default, Browse and Search are available.

	Backend interface

