
Alter the JavaScript Application routing
PlatformUI routing mechanism
Modifying the routing from the bundle with a plugin

Declaring the module providing plugin
Module creation
Base plugin code
Adding a route to the application

PlatformUI routing mechanism

The essential task of the PlatformUI Application component is to handle the routing. It is based on the routing capabilities provided by the YUI App
 and it uses hash-based URIs. By default, the PlatformUI Application will recognize and handle component several routes which are declared in

.the app component itself

A route is described by an object with the following properties:

path: the path to match
view: the identifier of the main view to render when the route is matched
callbacks: a list of  to executemiddlewares
name: an optional name to generate links
sideViews: an optional side view configuration
service: an optional reference to a view service constructor

Modifying the routing from the bundle with a plugin

To tweak any behavior in the application, the way to go is to write a plugin and in this case a plugin for the Application.

Declaring the module providing plugin

The module has to be declared in the extension bundle's  file. It can be done in the following way:yui.yml

system:
    default:
        yui:
            modules:
                # use your own prefix, not "ez-"
                ezconf-listapplugin: # module identifier
                    dependencyOf: ['ez-platformuiapp']
                    requires: ['ez-pluginregistry', 'plugin', 'base'] # depends on the
plugin code
                    path:
%extending_platformui.public_dir%/js/apps/plugins/ezconf-listappplugin.js

This configuration means we are declaring a module whose identifier is . It will be added to the dependency list of theezconf-listapplugin
module  (the one providing the application component). The plugin module requires ,  and ez-platformuiapp ez-pluginregistry plugin ba

 It is stored on the disk in .se. %extending_platformui.public_dir%/js/apps/plugins/ezconf-listappplugin.js

Module creation

Before creating the actual plugin code, we have to first create the module in the configured file. The minimal module code is:

%extending_platformui.public_dir% is a container parameter which was added in the previous step. It is here to avoid
repeating again and again the base path to the public directory. Of course, it is also perfectly possible to write the full path to the
module.

http://yuilibrary.com/yui/docs/app/#hash-based-urls-only
http://yuilibrary.com/yui/docs/app/#hash-based-urls-only
https://github.com/ezsystems/PlatformUIBundle/blob/master/Resources/public/js/apps/ez-platformuiapp.js#L720
https://github.com/ezsystems/PlatformUIBundle/blob/master/Resources/public/js/apps/ez-platformuiapp.js#L720


YUI.add('ezconf-listapplugin', function (Y) {
    // module code goes here!
 // this function will executed when the module loaded in the app,
    // not when the file is loaded by the browser
    // the Y parameter gives access to the YUI env, for instance the components
    // defined by others modules.
}); 

Base plugin code

After the module creation, it is time to create the minimal Application plugin:

YUI.add('ezconf-listapplugin', function (Y) {
    // Good practices:
    // * use a custom namespace. 'eZConf' is used as an example here.
    // * put the plugins in a 'Plugin' sub namespace
    Y.namespace('eZConf.Plugin');

    Y.eZConf.Plugin.ListAppPlugin = Y.Base.create('ezconfListAppPlugin',
Y.Plugin.Base, [], {
        initializer: function () {
            var app = this.get('host'); // the plugged object is called host

            console.log("Hey, I'm a plugin for PlatformUI App!");
            console.log("And I'm plugged in ", app);
        },
    }, {
        NS: 'ezconfTypeApp' // don't forget that
    });

    // registering the plugin for the app
    // with that, the plugin is automatically instantiated and plugged in
    // 'platformuiApp' component.
    Y.eZ.PluginRegistry.registerPlugin(
        Y.eZConf.Plugin.ListAppPlugin, ['platformuiApp']
    );
});

The added code creates a plugin class and registers it under , then the PlatformUI plugin registry isY.eZConf.Plugin.ListAppPlugin
configured so that this plugin is automatically instantiated and plugged in the PlatformUI App component.

%extending_platformui.public_dir%/js/apps/plugins/ezconf-listappplugin.js

The first parameter of  should be exactly the module identifier used in  otherwise the module won't be correctlyYUI.add yui.yml
loaded in the application. If the module code does not seem to be taken into account, it is the very first thing to check.

%extending_platformui.public_dir%/js/apps/plugins/ezconf-listappplugin.js

The PlatformUI's plugin system comes almost entirely from . While that's not a strict requirement, you should use the the YUI plugin Adv
 strategy mentioned in the YUI documentation. That's why in this example and in most cases, the plugin will have the anced Plugins plu

 and  YUI plugin as dependencies.  also provides the low level foundations for most PlatformUI component, so reading gin base base th
 will also help understanding several concepts used all over the application.e Base YUI documentation

http://yuilibrary.com/yui/docs/plugin/
http://yuilibrary.com/yui/docs/base/
http://yuilibrary.com/yui/docs/base/


At this point, if you open PlatformUI in your favorite browser with the console open, you should see the result of the  calls in theconsole.log
above code.

Adding a route to the application

Finally, the plugin is ready to add a new route to the application. As written in the previous code sample, the plugged object, the application here,
is available through  in the plugin. The App object provides  allowing to add route.this.get('host') a  methodroute

YUI.add('ezconf-listapplugin', function (Y) {
    Y.namespace('eZConf.Plugin');

    Y.eZConf.Plugin.ListAppPlugin = Y.Base.create('ezconfListAppPlugin',
Y.Plugin.Base, [], {
        initializer: function () {
            var app = this.get('host'); // the plugged object is called host

            app.route({
                name: "eZConfList",
                path: "/ezconf/list",
                view: "dashboardView", // let's display the dashboard since we don't
have a custom view... yet :)
                // we want the navigationHub (top menu) but not the discoveryBar
                // (left bar), we can try different options
                sideViews: {'navigationHub': true, 'discoveryBar': false},
                callbacks: ['open', 'checkUser', 'handleSideViews', 'handleMainView'],
            });
        },
    }, {
        NS: 'ezconfTypeApp' // don't forget that
    });

    Y.eZ.PluginRegistry.registerPlugin(
        Y.eZConf.Plugin.ListAppPlugin, ['platformuiApp']
    );
});

Now, if you refresh your browser, you still need not see any visible change but the application should recognize the   hash URI./ezconf/list
Going to  should display the same thing as ./ez#/ezconf/list /ez#/dashboard

%extending_platformui.public_dir%/js/apps/plugins/ezconf-listappplugin.js

The PlatformUI Application component extends the YUI App component, as a result  can be used.the complete API of this component

Results and next step:
The resulting code can be seen in , this step result can also be viewed as the 3_routing tag on GitHub a diff between tags 2_configur

. and ation 3_routing

The next step is then .to define a new view and to use it when the newly added route is matched

http://yuilibrary.com/yui/docs/api/classes/App.html#method_route
http://yuilibrary.com/yui/docs/api/classes/App.html
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/tree/3_routing
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/compare/2_configuration...3_routing
https://github.com/ezsystems/ExtendingPlatformUIConferenceBundle/compare/2_configuration...3_routing
https://doc.ez.no/display/TECHDOC/Define+a+View

	Alter the JavaScript Application routing

