
1. Getting started
In this chapter, we will see two ways of customizing eZ Platform: command line scripts (for import scripts, for instance), and custom controllers,
the eZ Platform equivalent of eZ Publish 4.x custom modules.

Symfony bundle
Generating a new bundle
Creating a command line script in your bundle
Creating a custom route with a controller action

routing.yml
DefaultController.php

Symfony bundle

In order to test and use Public API code, you will need to build a custom bundle. Bundles are Symfony's extensions, and are therefore also used
to extend eZ Platform. Symfony 2 provides code generation tools that will let you create your own bundle and get started in a few minutes.

In this chapter, we will show how to create a custom bundle, and implement both a command line script and a custom route with its own controller
action and view. All shell commands assume that you use some Linux shell, but those commands would of course also work on Windows
systems.

Generating a new bundle

First, change the directory to your eZ Platform root.

$ cd /path/to/ezplatform

Then use the app/console application with the command to start the bundle generation wizard.generate:bundle

Let's follow the instructions provided by the wizard. Our objective is to create a bundle named , EzSystems/Bundles/CookBookBundle
located in the directory.src

$ php app/console generate:bundle

The wizard will first ask about our bundle's namespace. Each bundle's namespace should feature a vendor name (in our own case:),EzSystems
optionally followed by a sub-namespace (we could have chosen to use), and end with the actual bundle's name, suffixed with Bundle: Bundle Co

.okbookBundle

Your application code must be written in bundles. This command helps you generate them
easily.

Each bundle is hosted under a namespace (like Acme/Bundle/BlogBundle).

The namespace should begin with a "vendor" name like your company name, your project
name, or your client name, followed by one or more optional category sub-namespaces,
and it should end with the bundle name itself (which must have Bundle as a suffix).

See http://symfony.com/doc/current/cookbook/bundles/best_practices.html#index-1 for
more details on bundle naming conventions.

Use / instead of \ for the namespace delimiter to avoid any problem.

Bundle namespace: EzSystems/CookbookBundle

Bundle namespace

https://github.com/docb22/ez-publish-cookbook/tree/master/EzSystems/CookBookBundle/Command

You will then be asked about the Bundle's name, used to reference your bundle in your code. We can go with the default, EzSystemsCookbook
. Just hit Enter to accept the default.Bundle

In your code, a bundle is often referenced by its name. It can be the concatenation of
all namespace parts but it's really up to you to come up with a unique name (a good
practice is to start with the vendor name).

Based on the namespace, we suggest EzSystemsCookbookBundle.

Bundle name [EzSystemsCookbookBundle]:

The next question is your bundle's location. By default, the script offers to place it in the folder. This is perfectly acceptable unless you have asrc
good reason to place it somewhere else. Just hit Enter to accept the default.

The bundle can be generated anywhere. The suggested default directory uses the
standard conventions.

Target directory [/path/to/ezpublish5/src]:

Next, you need to choose the generated configuration's format, out of YAML, XML, PHP or annotations. We mostly use yaml in eZ Platform, and
we will use it in this cookbook. Enter 'yml', and hit Enter.

Determine the format to use for the generated configuration.

Configuration format (yml, xml, php, or annotation) [annotation]: yml

The last choice is to generate code snippets demonstrating the Symfony directory structure. If you're learning Symfony, it is a good idea to accept,
as it will create a controller, yaml files, etc.

To help you get started faster, the command can generate some code snippets for you.

Do you want to generate the whole directory structure [no]? yes

The generator will then summarize the previous choices, and ask for confirmation. Hit Enter to confirm.

Bundle name

Bundle directory

Configuration format

Generate snippets & directory structure

You are going to generate a "EzSystems\Bundle\CookbookBundle\EzSystemsCookbookBundle"
bundle in "/path/to/ezpublish5/src/" using the "yml" format.

Do you confirm generation [yes]? yes

The wizard will generate the bundle, check autoloading, and ask about the activation of your bundle. Hit Enter in the answer to both questions to
have your bundle automatically added to your Kernel () and routes from your bundle added to the existing routes (app/AppKernel.php app/co

).nfig/routing.yml

Bundle generation

Generating the bundle code: OK
Checking that the bundle is autoloaded: OK
Confirm automatic update of your Kernel [yes]?
Enabling the bundle inside the Kernel: OK
Confirm automatic update of the Routing [yes]?
Importing the bundle routing resource: OK

 You can now start using the generated code!

Your bundle should be generated and activated. Let's now see how you can interact with the Public API by creating a command line script, and a
custom controller route and action.

Creating a command line script in your bundle

Writing a command line script with Symfony 2 is easy. The framework and its bundles ship with a few scripts. They are all started using very php
. You can get the complete list of existing command line scripts by executing from the eZapp/console <command> php app/console list

Platform root.

In this chapter, we will create a new command, identified as , that takes an optional name argument, and greetsezpublish:cookbook:hello
that name. To do so, we need one thing: a class with a name ending with "Command" that extends Symfony\Component\Console\Command\

. Note that in our case, we use instead of , since we need the dependency injection container toCommand ContainerAwareCommand Command
interact with the Public API. In your bundle's directory (), create a new directory named , and insrc/EzSystems/CookbookBundle Command
this directory, a new file named .HelloCommand.php

Add this code to the file:

Summary and confirmation

Activation and generation

<?php
namespace EzSystems\CookBookBundle\Command;

use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;
use Symfony\Component\Console\Input\InputArgument;

class HelloCommand extends
\Symfony\Bundle\FrameworkBundle\Command\ContainerAwareCommand
{
 /**
 * Configures the command
 */
 protected function configure()
 {
 }

 /**
 * Executes the command
 * @param InputInterface $input
 * @param OutputInterface $output
 */
 protected function execute(InputInterface $input, OutputInterface $output)
 {
 }
}

This is the skeleton for a command line script.

One class with a name ending with "Command" (), extends , and isHelloCommand Symfony\Bundle\FrameworkBundle\Command\Command
part of our bundle's Command namespace. It has two methods: , and . We also import several classes & interfacesconfigure() execute()
with the use keyword. The first two, and are used to 'typehint' the objects that will allow us to provideInputInterface OutputInterface
input & output management in our script.

Configure will be used to set your command's name, as well as its options and arguments. will contain the actual implementation ofExecute
your command. Let's start by creating the method.configure()

protected function configure()
{
 $this->setName('ezpublish:cookbook:hello');
 $this->setDefinition(
 array(
 new InputArgument('name', InputArgument::OPTIONAL, 'An argument')
)
);
}

First, we use to set our command's name to " ". We then use to add ansetName() ezpublish:cookbook:hello setDefinition()
argument, named , to our command.name

You can read more about argument definitions and further options in the . Once this is done, if you run Symfony 2 Console documentation php
, you should see listed in the available commands. If you run it, it will however still doapp/console list ezpublish:cookbook:hello

nothing.

HelloCommand.php

TestCommand::configure()

http://symfony.com/doc/2.0/components/console/introduction.html

Let's just add something very simple to our method so that our command actually does something.execute()

protected function execute(InputInterface $input, OutputInterface $output)
{
 // fetch the input argument
 if (!$name = $input->getArgument('name'))
 {
 $name = "World";
 }
 $output->writeln("Hello $name");
}

You can now run the command from the eZ Platform root.

$ php app/console ezpublish:cookbook:hello world
Hello world

Creating a custom route with a controller action

In this short chapter, we will see how to create a new route that will catch a custom URL and execute a controller action. We want to create a new
route, , that displays a simple 'Hello world' message. This tutorial is a simplified version of the official one that can be found on /cookbook/test

.http://symfony.com/doc/current/book/controller.html

During our bundle's generation, we have chosen to generate the bundle with default code snippets. Fortunately, almost everything we need is part
of those snippets. We just need to do some editing, in particular in two locations: and src/EzSystems/Resources/config/routing.yml sr

. The first one will be used to configure our route (c/EzSystems/CookbookBundle/Controllers/DefaultController.php /cookbook/
) as well as the controller action the route should execute, while the latter will contain the actual action's code.test

routing.yml

This is the file where we define our action's URL matching. The generated file contains this YAML block:

ez_systems_cookbook_homepage:
 path: /hello/{name}
 defaults: { _controller: EzSystemsCookbookBundle:Default:index }

We can safely remove this default code, and replace it with this:

ezsystems_cookbook_hello:
 path: /cookbook/{name}
 defaults: { _controller: EzSystemsCookbookBundle:Default:hello }

We define a route that matches the URI /cookbook/* and executes the action in the Default controller of our bundle. The next step is tohello

TestCommand::execute()

Hello world

Generated routing.yml

Edited routing.yml

http://symfony.com/doc/current/book/controller.html

create this method in the controller.

DefaultController.php

This controller was generated by the bundle generator. It contains one method, , that matched the YAML configuration we havehelloAction()
changed in the previous part. Let's just rename the method so that we end up with this code.indexAction()

public function helloAction($name)
{
 $response = new \Symfony\Component\HttpFoundation\Response;
 $response->setContent("Hello $name");
 return $response;
}

We won't go into details about controllers in this cookbook, but let's walk through the code a bit. This method receives the parameter defined in ro
. It is called "name" in the route definition, and must be called $name in the matching action. Since the action is named "hello" in uting.yml rou

, the expected method name is .ting.yml helloAction

Controller actions return a Response object that will contain the response's content, the headers, and various optional properties that affectmust
the action's behavior. In our case, we simply set the content, using , to "Hello $name". GosetContent()
to http://ezplatform/cookbook/hello/YourName, and you should get "Hello YourName".

With both command line scripts and HTTP routes, you have the basics you need to start writing Public API code.

DefaultController::helloAction()

The custom EzPublishCoreBundle Controller
For convenience, a custom controller is available at . It gives you with a few commodityeZ\Bundle\EzPublishCoreBundle\Controller
methods:

getRepository()
Returns the Public API repository that gives you access to the various services through , getContentService() getLocati

 and so on; onService()
getLegacyKernel()
Returns an instance of the that you can use to interact with the Legacy eZ Platform kerneleZ\Publish\Core\MVC\Legacy\Kernel
getConfigResolver()
Returns the that gives you access to configuration data.ConfigResolver

You are encouraged to use it for your custom controllers that interact with eZ Platform.

http://apidoc.ez.no/sami/trunk/NS/html/eZ/Bundle/EzPublishCoreBundle/Controller.html
http://apidoc.ez.no/doxygen/trunk/NS/html/classeZ_1_1Publish_1_1Core_1_1MVC_1_1Legacy_1_1Kernel.html
http://apidoc.ez.no/doxygen/trunk/NS/html/classeZ_1_1Bundle_1_1EzPublishCoreBundle_1_1DependencyInjection_1_1Configuration_1_1ConfigResolver.html

	1. Getting started

