
Development guidelines
These are the development/coding guidelines for eZ Platform kernel, they are the same if you
intend to write Bundles, hack on eZ Platform itself or create new functionality for or on top of eZ
Platform.

Like most guidelines these aims to improve security, maintainability, performance anddevelopment
readability of our software. They follow industry standards but sometimes extend them to cater
specifically to our needs for eZ Platform ecosystem. The next sections will cover all relevant
technologies from a high level point of view.

HTTP

eZ Platform is a web software that is reached via HTTP in most cases, out of the box in eZ
Platform kernel this is specifically: web (usually HTML) or REST.

We aim to follow the stable HTTP specification, and industry best practice:latest

Expose our data in a RESTful way
GET, HEAD, OPTIONS & TRACE methods are (otherwise known as safe nullipot

), as in: should never cause changes to resources (note: things like writing aent
line in a log file are not considered resource changes)
PUT & DELETE methods are , as in multiple identical requests shouldidempotent
all have the same result as a single request
GET & HEAD methods should be both on client side, server-side andcacheable
proxies between, as further defined in the HTTP specification
As PUT is for replacing a resource, we should use in cases where onlyPATCH
partial replacement is intended

Authenticated traffic
Should use HTTPS

Session based traffic
Should follow recommendations for Authenticated traffic
Should use a per user session token on all requests using un-safe HTTPCSRF
methods (POST, PUT, DELETE, PATCH, ...)
Should expire session id, session data and CSRF token on login, logout and
session time out, except:

On login session data from previous session id is moved to new session
id, keeping for instance shopping basket on login

Should avoid timing attacks by using a random amount of time for login operation
Should never use Session id in URI's. And this feature ("SID") must always be
disabled on production servers

Sessions
Should not be used to store large amounts of data; store data in database and id's
in session if needed
Should not store critical data: if user deletes his cookies or closes his browser
session data is lost
Should use an ID generated with enough randomness to prevent prediction or
brute-force attacks

Cookies (especially session cookies)
Should never store sensitive data in cookies (only exception is session id in
session cookie)
Should always set to avoid when on sharedFull domain cross-subdomain cooking
domain.
Should set flag to reduce risk of attacks such as and HttpOnly cross-site cooking c
ross-site scripting
Should set if HTTPS is used (as recommended above)Secure flag
Must never exceed 4kb

Headers
Should never include input data from user input or data from database without
sanitizing it

Redirects
Should never take url from user input (example: POST parameter), instead allow
identifiers instead that are understood by the backend

User input
Should always be validated, sanitized, casted and filtered to avoid & XSS clickjack

 attacksing
NB: this includes variables in the php supervariable as well$_SERVER
(e.g. hostname should not be trusted)

In this topic:

HTTP
REST
UI

WEB Forms/Ajax
HTML/Templates
Admin

PHP
Public API
Command line

Data & Databases
Sessions
Transactions
Limitations in the
SQL dialect
supported

http://trac.tools.ietf.org/wg/httpbis/trac/wiki#HTTP1.1Deliverables
http://tools.ietf.org/html/draft-ietf-httpbis-p2-semantics-21#section-5.2.1
http://en.wiktionary.org/wiki/nullipotent
http://en.wiktionary.org/wiki/nullipotent
http://tools.ietf.org/html/draft-ietf-httpbis-p2-semantics-21#section-5.2.2
http://tools.ietf.org/html/draft-ietf-httpbis-p2-semantics-21#section-5.2.3
http://tools.ietf.org/html/draft-ietf-httpbis-p6-cache-21
http://tools.ietf.org/html/rfc5789
http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Session_fixation#Attacks_using_cross-subdomain_cooking
http://en.wikipedia.org/wiki/Session_fixation#Attacks_using_cross-site_cooking
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Clickjacking
http://en.wikipedia.org/wiki/Clickjacking

User file uploads
Should follow recommendations for "User input" to validate file name
Should place uploaded files in a non public folder to avoid access to execute
uploaded file or in case of assets white list the type
Should be appropriately limited in size to avoid DOS attacks on disk space, cpu
usage by antivirus tool etc...

File downloads
Should not rely on user provided file path for non public files, instead use a
synthetic id

Admin operations
May be placed on a different (sub)domain then the front end website to avoid
session stealing across front and backend.

Fully support being placed behind a reverse proxy like Varnish

REST

For now see the living in our git repository for further details.REST v2 specification

UI

eZ Platform is often used as a web content management software, so we always strive to use the
HTML/CSS/EcmaScript specifications correctly, and keep new releases up to date on new
revisions of those. We furthermore always try to make sure our software gracefully degrades
making sure it is useful even on older or less capable web clients (browsers), the industry terms for
this approach are:

Progressive enhancement
Unobtrusive JavaScript
Responsive Design

All these terms in general recommends aiming for the minimum standard first, and enhance with
additional features/styling if the client is capable of doing so. In essence this allows eZ Platform to
be "Mobile first" if the design allows for it, which is recommended. But eZ Platform should always
also be fully capable of having different sets of web presentations for different devices using one or
several sets of SiteAccess matching rules for the domain, port or URI, so any kind of device
detection can be used together with eZ Platform, making it fully possible to write for instance WAP
based websites and interfaces on top of eZ Platform.

WEB Forms/Ajax

As stated in the HTTP section, all unsafe requests to the web server should have a CSRF token to
protect against attacks; this includes web forms and ajax requests that don't use the GET http
method. As also stated in the HTTP section and further defined in the PHP section, User input
should always be validated to avoid XSS issues.

HTML/Templates

All data that comes from backend and in return comes from user input should always be escaped,
in case of Twig templates this done by default, but in case of PHP templates, Ajax and other not
Twig based output this must be handled manually.

Output escaping must be properly executed according to the desired format, eg. javascript vs. html,
but also taking into account the correct character set (see eg. output escaping fallacy when not
specifying charset encoding in)htmlspecialchars

Admin

Admin operations that can have a severe impact on the web applications should require providing
password and require it again after some time has gone, normally 10 - 20 minutes, on all session
based interfaces.

<TODO: Add more coding guidelines for HTML (XHTML5), Javascript, CSS and templates>

https://www.varnish-cache.org/
https://github.com/ezsystems/ezp-next/blob/master/doc/specifications/rest/REST-API-V2.rst
http://en.wikipedia.org/wiki/Progressive_enhancement
http://en.wikipedia.org/wiki/Unobtrusive_JavaScript
http://en.wikipedia.org/wiki/Responsive_Web_Design
http://en.wikipedia.org/wiki/Wireless_Application_Protocol
http://www.php.net/htmlspecialchars

PHP

For now see our comprehensive coding standard & guidelines on github.wiki page

Public API

The PHP Public API provided in eZ Platform is in most cases in charge of checking permissions to
data for you, but some API's are not documented to throw UnauthorizedException, which means
that it is the consumer of the API's who is responsible for checking permissions.

The following example shows how this is done in the case of loading users:

// Get a user
$userId = (int)$params['id'];
$userService = $repository->getUserService();
$user = $userService->loadUser($userId);

// Now check that current user has access to read this
user
if (!$repository->canUser('content', 'read', $user))
{
 // Generates message: User does not have access to
'content' 'read' with id '10'
 throw new
\eZ\Publish\Core\Base\Exceptions\UnauthorizedException(
'content', 'read', array('id' => $userId));
}

Command line

Output must always be escaped when displaying data from the database.

<TODO: Expand on how best practice is to handle user input in eZ Platform to avoid XSS issues>

Data & Databases

Values coming from variables should always be appropriately quoted or binded in SQL
statements
The SQL statements used should never be created by hand with one version per
supported database, as this increases both the maintenance load and the chances for
security-related problems
Usage of temporary tables is discouraged, as their behaviour is very different on different
databases. Subselects should be prefererred (esp. since recent mysql versions have much
better support for them)
Full table locking is discouraged

<TODO: guidelines for how data should be stored for maximum portability (hint: XML &
abstraction)>

Sessions

Business logic should not depend on database connections being either persistent or not

eZ Coding Standards Tools
See also repository to get the configuration files for youreZ Coding Standards Tools
favorite tools.

loadUser()

https://github.com/ezsystems/ezpublish-kernel/wiki/codingstandards
http://eZ%20Coding%20Standard%20tools

persistent
The connection to the database should always be opened as late as possible during page
execution. Ideally, to improve scalability, a web page executing no queries should not
connect to the db at all (note that closing the db connection as soon as possible is a tricky
problem, as we expect to support persistent db connections as well for absolute best
performances)
The same principle applies to configurations where a master/slave db setup is in use: the
chance for a failure due to a database malfunction should not increase with the number of
db servers at play, but actually decrease
It is recommended to avoid as much as possible statements which alter the current
session, as they slow down the application, are brittle and hard to debug.
Point in case; if a db session locks a table then is abruptly terminated, the table might stay
locked for a long time

Transactions

Transactions should always be used to wrap sql statements which affect data in multiple
tables: either all data changes go through or none of them
Transactions are prone to locking issues, so the code executed within a transaction should
be limited to the minimum necessary amount (ex. clearing caches should be done after the
transaction is committed)
When using transactions, always consider side effects on external system, such as on-disk
storage. F.e. is a transaction relative to creating an image variation is rolled back, the
corresponding file should not be left on disk
Nested transactions are supported in the following way:

a transaction within another one will not commit when requested, only the
outhermost transaction will commit
a transaction within another one will roll back all the way to the start of the
outhermost transaction when requested
as a result a transaction shall never be rolled back just as a means of cancelling
its work - the side effect might be of cancelling other work which had just been
done previously

Limitations in the SQL dialect supported

Striving to support Mysql 5, PostgreSQL xx and Oracle 10, the following limitations apply:

Tables, columns and other db objects should not use names longer than 30 chars
Varchar columns with a definition of are discourageddefault "" not null
For SELECTs, offset and limit have to be handled by the php layer, not hardcoded in the
sql
Never treat a NULL varchar value as semantically different from an empty string value
The select list of a query cannot contain the same field multiple times
For GROUP BY statements, all fields in the group by clause should be in the select list as
well
For SELECTs, usage of the AS token is allowed in the select list, but not in the list of
tables
Do not put quotes around numeric values (use proper casting/escaping to avoid SQL
injection)
<TODO: finish sql guidelines>

	Development guidelines

