
Service Container
Definition

A service container, (aka ,) is a special object that greatlyDIC Dependency Injection Container
facilitates dependencies resolution in your application and sits on Dependency Injection design

. Basically, this design pattern proposes to inject all needed objects and configuration intopattern
your business logic objects (aka). It avoids the massive use of singletons, globalservices
variables or complicated factories and thus makes your code much more readable and testable. It
avoids "magic."

The main issue with dependency injection is how to resolve your dependencies for your services.
This is where the service container comes into play. The role of a service container is to build and
maintain your services and their dependencies. Basically, each time you need a service, you may
ask the service container for it, which will either build it with the configuration you provided, or give
you an existing instance if it is already available.

In eZ Platform

eZ Platform uses .Symfony service container

It is very powerful and highly configurable. We encourage you to read its dedicated documentation
as it will help you understand how eZ Platform services are made:

Introduction and basic usage
Full documentation of the Dependency Injection Component
Cookbook
Base service tags

Service tags

Service tags in Symfony DIC are a useful way of dedicating services to a specific purpose. They
are usually used for extension points.

For instance, if you want to register a to add custom filters, you will need to createTwig extension
the PHP class and declare it as a service in the DIC configuration with the tag (see twig.extension

 for a full example).Symfony cookbook entry

eZ Platform exposes several features this way (see the list of core service tags). This is for
example the case for Field Types.

You will find all service tags exposed by Symfony in .its reference documentation

Core & API

Tag name Usage

router Adds a specific router to the chain router

twig.loader Registers a template loader for twig

ezpublish.content_view_provider Registers a ContentViewProvider for template
selection depending on content/Location being
viewed

ezpublish.storageEngine Registers a storage engine in the Repository
factory

ezpublish.fieldType Registers a Field Type

Legacy

http://en.wikipedia.org/wiki/Dependency_injection
http://en.wikipedia.org/wiki/Dependency_injection
http://symfony.com/doc/master/book/service_container.html
http://symfony.com/doc/master/book/service_container.html
http://symfony.com/doc/master/components/dependency_injection/index.html
http://symfony.com/doc/master/cookbook/service_container/index.html
http://symfony.com/doc/master/reference/dic_tags.html
http://twig.sensiolabs.org/doc/advanced.html#creating-extensions
http://symfony.com/doc/master/cookbook/templating/twig_extension.html
http://symfony.com/doc/master/reference/dic_tags.html
https://doc.ez.no/display/DEVELOPER/Register+Field+Type

Tag name Usage

ezpublish.storageEngine.legacy.con
verter

Registers a converter for a Field Type in
legacy storage engine

ezpublish.fieldType.externalStorag
eHandler

Registers an external storage handler for a
Field Type

ezpublish.fieldType.externalStorag
eHandler.gateway

Registers an external storage gateway for a
Field Type in legacy storage engine

https://doc.ez.no/display/DEVELOPER/Register+Field+Type
https://doc.ez.no/display/DEVELOPER/Register+Field+Type
https://doc.ez.no/display/DEVELOPER/Register+Field+Type
https://doc.ez.no/display/DEVELOPER/Register+Field+Type
https://doc.ez.no/display/DEVELOPER/Register+Field+Type
https://doc.ez.no/display/DEVELOPER/Register+Field+Type

	Service Container

