
1.

2.

Solr Bundle

What is Solr Search Engine Bundle?

ezplatform-solr-search-engine as the package is called, aims to be a transparent drop in
replacement for the SQL based "Legacy" search engine powering eZ Platform Search API by
default. By enabling Solr and re-indexing your content, all your existing Search queries using
SearchService, will be powered by Solr automatically. This allows you to scale up your eZ Platform
installation and be able to continue development locally against SQL engine, and have a test
infrastructure, Staging and Prod powered by Solr, thus removing considerable load from your

database so it can focus on more important things, like publishing .

See Architecture page for further information on the architecture of eZ Platform.

How to set up Solr Search engine

Step 0: Enable Solr Bundle

Check in composer.json if you have the ezsystems/ezplatform-solr-search-engi
 package, if not add/update composer dependencies:ne

composer require --no-update
ezsystems/ezplatform-solr-search-engine:~1.0
composer update

Make sure EzPublishSolrSearchEngineBundle is activated with the following line in app/A
 file: new ppKernel.php EzSystems\EzPlatformSolrSearchEngineBundle\EzSy

stemsEzPlatformSolrSearchEngineBundle()

Step 1: Configuring & Starting Solr

First download and extract Solr, :we currently support Solr 4.10.4

solr-4.10.4.tgz or solr-4.10.4.zip

In this topic:

What is Solr Search Engine
Bundle?
How to set up Solr Search
engine

Step 0: Enable Solr
Bundle
Step 1: Configuring
& Starting Solr
Step 2: Configuring
bundle
Step 3: Configuring
repository with the
specific search
engine
Step 4: Clear prod
cache
Step 5: Run CLI
indexing command

Extending the Solr Search
engine Bundle

Document Field
Mappers

Providing feedback

For use with eZ Publish 5.4, go to which covers the corresponding documentation page
the v1.0 version of the bundle compatible with eZ Publish 5.4.

Not needed with eZ Platform
This step is not needed as of eZ Platform 15.09, however it is kept here for reference in
case you have previously disabled the bundle.

command line

Example here is for single core, look to for configuring Solr in otherSolr documentation
ways, also see the provided configuration for some examples.

https://github.com/ezsystems/ezplatform-solr-search-engine
https://doc.ez.no/display/DEVELOPER/Architecture%3A+An+Open+Source+PHP+CMS+Built+On+Symfony2+Full+Stack
http://archive.apache.org/dist/lucene/solr/4.10.4/solr-4.10.4.tgz
http://archive.apache.org/dist/lucene/solr/4.10.4/solr-4.10.4.zip
https://doc.ez.no/display/EZP/Solr+Search+Engine+Bundle
https://cwiki.apache.org/confluence/display/solr/Solr+Cores+and+solr.xml
https://wiki.apache.org/solr/CoreAdmin

Secondly, copy configuration files needed for eZ Solr Search Engine bundle, here from the root of
:your project to the place you extracted Solr

Make sure to change the /opt/solr/ path with where you
have placed Solr
cp -R
vendor/ezsystems/ezplatform-solr-search-engine/lib/Resou
rces/config/solr/*
/opt/solr/example/solr/collection1/conf/

/opt/solr/bin/solr start -f

Thirdly, Solr Bundle does not commit solr index changes directly on repository updates, leaving it
up to you to tune this using as best practice suggests, example config:solrconfig.xml

<autoCommit>
 <!-- autoCommit is here left as-is like it is out of
the box in Solr 4.10.4, this controls hard commits for
durability/replication -->
 <maxTime>${solr.autoCommit.maxTime:15000}</maxTime>
 <openSearcher>false</openSearcher>
</autoCommit>

<autoSoftCommit>
 <!-- Soft commits controls mainly when changes becomes
visible, by default we change value from -1 (disabled)
to 100ms, to try to strike a balance between Solr
performance and staleness of HttpCache generated by Solr
queries -->
 <maxTime>${solr.autoSoftCommit.maxTime:100}</maxTime>
</autoSoftCommit>

Step 2: Configuring bundle

The Solr search engine bundle can be configured many ways, in the config further below it
assumes you have parameters setup for solr dsn and search engine ,(however both are optional)
example:

search_engine: solr
 solr_dsn: 'http://localhost:8983/solr'

On to configuring the bundle.

Single Core example (default)

Command line example

solrconfig.xml

parameters.yml

Out of the box in eZ Platform the following is enabled for simple setup:

ez_search_engine_solr:
 endpoints:
 endpoint0:
 dsn: %solr_dsn%
 core: collection1
 connections:
 default:
 entry_endpoints:
 - endpoint0
 mapping:
 default: endpoint0

config.yml

Shared Core example

In the following example we have decided to separate one language as the installation contains
several similar languages, and one very different language that should receive proper language
analysis for proper stemming and sorting behavior by Solr:
config.yml

ez_search_engine_solr:
 endpoints:
 endpoint0:
 dsn: %solr_dsn%
 core: core0
 endpoint1:
 dsn: %solr_dsn%
 core: core1
 connections:
 default:
 entry_endpoints:
 - endpoint0
 - endpoint1
 mapping:
 translations:
 jpn-JP: endpoint1
 # Other languages, for instance eng-US and other
western languages are sharing core
 default: endpoint0

Multi Core example

If full language analysis features are preferred, then each language can be configured to separate
cores.

Note: Please make sure to test this setup against single core setup, as it might perform worse than
single core if your project uses a lot of language fallbacks per siteaccess, as queries will
then be performed across several cores at once.

Step 3: Configuring repository with the specific search engine

The following is an example of configuring Solr Search Engine, where name is sameconnection
as in example above, and engine is set to :solr

config.yml

ez_search_engine_solr:
 endpoints:
 endpoint0:
 dsn: %solr_dsn%
 core: core0
 endpoint1:
 dsn: %solr_dsn%
 core: core1
 endpoint2:
 dsn: %solr_dsn%
 core: core2
 endpoint3:
 dsn: %solr_dsn%
 core: core3
 endpoint4:
 dsn: %solr_dsn%
 core: core4
 endpoint5:
 dsn: %solr_dsn%
 core: core5
 endpoint6:
 dsn: %solr_dsn%
 core: core6
 connections:
 default:
 entry_endpoints:
 - endpoint0
 - endpoint1
 - endpoint2
 - endpoint3
 - endpoint4
 - endpoint5
 - endpoint6
 mapping:
 translations:
 - jpn-JP: endpoint1
 - eng-US: endpoint2
 - fre-FR: endpoint3
 - ger-DE: endpoint4
 - esp-ES: endpoint5
 # Not really used, but specified here for
fallback if more languages are suddenly added by content admins
 default: endpoint0
 # Also use separate core for main languages
(differs from content object to content object)
 # This is useful to reduce number of cores
queried for always available language fallbacks
 main_translations: endpoint6

ezpublish:
 repositories:
 default:
 storage: ~
 search:
 engine: %search_engine%
 connection: default

Step 4: Clear prod cache

While Symfony dev environment keeps track of changes to yml files, prod does not, so to make
sure Symfony reads the new config we clear cache:

php app/console --env=prod cache:clear

Step 5: Run CLI indexing command

Last step is to execute initial indexation of data:

php app/console --env=prod --siteaccess=<name>
ezplatform:solr_create_index

V1.7.0

ezplatform.yml

%search_engine% is a parameter that is configured in , andapp/config/parameters.yml
should be changed from its default value " " to " " to activate Solr as the Search engine.legacy solr

Make sure to configure your setup for indexing
Some exceptions might happen on indexing if you have not configured your setup
correctly, here are the most common issues you may encounter:

Exception if Binary files in database have an invalid path prefix
Make sure configuration ezplatform.yml is configuredvar_dir
properly.
If your database is inconsistent in regards to file paths, try to update
entries to be correct .(but make sure to make a backup first)

Exception on unsupported Field Types
Make sure to implement all Field Types in your installation, or to
configure missing ones as if implementation is not needed. NullType

Content not immediately available
Solr Bundle is on purpose not committing changes directly on
Repository updates , but letting you control this using Solr(on indexing)
configuration. Adjust Solr autoSoftCommit visibility of change to

 search index) and/or autoCommit (hard commit, for durability and
to balance performance and load on your Solr instancereplication)

against needs you have for " ".NRT
Running out of memory during indexing

In general make sure to run indexing using prod environment to avoid
debuggers and loggers from filing up memory.
Stash: Disable in_memory cache as recommended on Persistence

 for long running scripts.cache
Flysystem: An open issue exists where you can find further info https://ji
ra.ez.no/browse/EZP-25325

https://doc.ez.no/display/DEVELOPER/Null+Field+Type
https://cwiki.apache.org/confluence/display/solr/Near+Real+Time+Searching
https://doc.ez.no/display/DEVELOPER/Repository#Repository-PersistenceCache
https://doc.ez.no/display/DEVELOPER/Repository#Repository-PersistenceCache
https://jira.ez.no/browse/EZP-25325
https://jira.ez.no/browse/EZP-25325

Since v1.7.0 the command is deprecated, use ezplatform:solr_create_index php
 instead: ezplatform:reindexapp/console

php app/console --env=prod --siteaccess=<name>
ezplatform:reindex

Extending the Solr Search engine Bundle

Document Field Mappers

V1.2+, AVAILABLE IN EZ PLATFORM V1.7+

As a developer you will often find the need to index some additional data in the search engine. The
use cases for this are wide, for example the data could come from an external source (for example

, or from an internal source.from recommendation system)

The common use case for the latter is indexing data through the Location hierarchy, for example
from the parent Location to the child Location, or in the opposite direction, indexing child data on
the parent Location. The reason might be you want to find the content with fulltext search, or you
want to simplify search for a complicated data model.

To do this effectively, you first need to understand how the data is indexed with Solr Search
engine. Documents are indexed per translation, as Content blocks. In Solr, a block is a nested
document structure. In our case, parent document represents Content, and Locations are indexed
as child documents of the Content. To avoid duplication, full text data is indexed on the Content
document only.

Knowing this, you have the option to index additional data on:

all block documents (meaning Content and its Locations, all translations)
all block documents per translation
Content documents
Content documents per translation
Location documents

Indexing additional data is done by implementing a document field mapper and registering it at one
of the five extension points described above. You can create the field mapper class anywhere
inside your bundle, as long as when you register it as a service, the "class" parameter" in your ser

 matches the correct path. We have three different field mappers. Each mappervices.yml
implements two methods, by the same name, but accepting different arguments:

ContentFieldMapper
::accept(Content $content)
::mapFields(Content $content)

ContentTranslationFieldMapper
::accept(Content $content, $languageCode)
::mapFields(Content $content, $languageCode)

LocationFieldMapper
::accept(Location $content)
::mapFields(Location $content)

These can be used on the extension points by registering them with the container using service
tags, as follows:

all block documents
ContentFieldMapper
ezpublish.search.solr.document_field_mapper.block

all block documents per translation
ContentTranslationFieldMapper
ezpublish.search.solr.field_mapper.block_translation

Content documents
ContentFieldMapper
ezpublish.search.solr.document_field_mapper.content

Content documents per translation
ContentTranslationFieldMapper
ezpublish.search.solr.field_mapper.content_translation

Location documents

LocationFieldMapper
ezpublish.search.solr.field_mapper.location

The following example shows how to index data from the parent Location content, in order to make
it available for full text search on the children content. A concrete use case could be indexing
webinar data on the webinar events, which are children of the webinar. Field mapper could then
look something like this:

 <?php

namespace My\WebinarApp;

use
EzSystems\EzPlatformSolrSearchEngine\FieldMapper\Content
FieldMapper;
use eZ\Publish\SPI\Persistence\Content\Handler as
ContentHandler;
use eZ\Publish\SPI\Persistence\Content\Location\Handler
as LocationHandler;
use eZ\Publish\SPI\Persistence\Content;
use eZ\Publish\SPI\Search;

class WebinarEventTitleFulltextFieldMapper extends
ContentFieldMapper
{
 /**
 * @var
\eZ\Publish\SPI\Persistence\Content\Type\Handler
 */
 protected $contentHandler;

 /**
 * @var
\eZ\Publish\SPI\Persistence\Content\Location\Handler
 */
 protected $locationHandler;

 /**
 * @param
\eZ\Publish\SPI\Persistence\Content\Handler
$contentHandler
 * @param
\eZ\Publish\SPI\Persistence\Content\Location\Handler
$locationHandler
 */
 public function __construct(
 ContentHandler $contentHandler,
 LocationHandler $locationHandler
) {
 $this->contentHandler = $contentHandler;
 $this->locationHandler = $locationHandler;
 }

 public function accept(Content $content)
 {
 // ContentType with ID 42 is webinar event
 return
$content->versionInfo->contentInfo->contentTypeId == 42;
 }

 public function mapFields(Content $content)
 {
 $mainLocationId =
$content->versionInfo->contentInfo->mainLocationId;
 $location =
$this->locationHandler->load($mainLocationId);
 $parentLocation =
$this->locationHandler->load($location->parentId);
 $parentContentInfo =
$this->contentHandler->loadContentInfo($parentLocation->
contentId);

 return [
 new Search\Field(
 'fulltext',
 $parentContentInfo->name,
 new Search\FieldType\FullTextField()
),

];
 }
}

Since we index full text data only on the Content document, you would register the service like this:

my_webinar_app.webinar_event_title_fulltext_field_mapper
:
 class:
My\WebinarApp\WebinarEventTitleFulltextFieldMapper
 arguments:
 - '@ezpublish.spi.persistence.content_handler'
 - '@ezpublish.spi.persistence.location_handler'
 tags:
 - {name:
ezpublish.search.solr.field_mapper.content}

Providing feedback

After completing the installation you are now free to use your site as usual. If you get any
exceptions for missing features, have feedback on performance, or want to discuss, join our
community slack channel at https://ezcommunity.slack.com/messages/ezplatform-use/

https://ezcommunity.slack.com/messages/ezplatform-use/

	Solr Bundle

