
Clustering
Introduction

Clustering in eZ Platform refers to setting up your install with several web servers for handling more
load and/or for failover.

Server setup overview

This diagram illustrates how clustering of eZ Platform is typically set up, the parts illustrate the
different roles needed for a successful cluster setup. The number of web servers, Memcached
servers, Solr servers, Varnish servers, Database servers, NFS servers, as well as whether some
servers play several of these roles is up to(typically running Memcached across the web server)
you and your performance needs.

The minimal requirements are the following :(with what is currently supported in italics)

Shared HTTP cache (using Varnish)
Shared Persistence cache and Sessions (using Memcached, or experimentally also Redis)
Shared Database (using MySQL/MariaDB)
Shared Filesystem (using NFS, or experimentally also S3)

For further details on requirements, see .Requirements page

While this is not a complete list, further recommendations include:

Using for better search and better search performanceSolr
Using a CDN for improved performance and faster ping time worldwide
Using Active/Passive Database for failover
In general: Make sure to use later versions of PHP and MySQL/MariaDB within what is

 for your eZ Platform version to get more performance out of each server. supported

Binary files clustering

eZ Platform supports multi-server by means of custom IO handlers. They will make sure that files
are correctly synchronized among the multiple clients that might use the data.

In this topic:

Introduction
Server setup
overview
Binary files
clustering

Configuration
DFS IO Handler

What it is
meant for
Configuratio
n
Web server
rewrite rules

Related:

Overview of steps to set up
Cluster:

Configure
Persistence Cache
Set up Varnish
Configure sessions

https://doc.ez.no/pages/viewpage.action?pageId=31429536
https://doc.ez.no/display/DEVELOPER/Solr+Bundle
https://doc.ez.no/pages/viewpage.action?pageId=31429536
https://doc.ez.no/pages/viewpage.action?pageId=31429536
https://doc.ez.no/display/DEVELOPER/Steps+to+set+up+Cluster
https://doc.ez.no/display/DEVELOPER/Steps+to+set+up+Cluster
https://doc.ez.no/display/DEVELOPER/Repository#Repository-Persistencecacheconfiguration
https://doc.ez.no/display/DEVELOPER/Repository#Repository-Persistencecacheconfiguration
https://doc.ez.no/display/DEVELOPER/HTTP+Cache#HTTPCache-UsingVarnish
https://doc.ez.no/display/DEVELOPER/Sessions

Configuration

DFS IO Handler

What it is meant for

The DFS IO handler (can be used to store binary files on an NFSlegacy_dfs_cluster)
server. It will use a database to manipulate metadata, making up for the potential inconsistency of
network based filesystems.

Configuration

You need to configure both metadata and binarydata handlers.

As the binarydata handler, create a new Flysystem local adapter configured to read/write to the
NFS mount point on each local server. As metadata handler handler, create a dfs one, configured
with a doctrine connection.

For production, we strongly recommend creating the DFS table in its own database, using the ven
 file.dor/ezsystems/ezpublish-kernel/data/mysql/dfs_schema.sql

In our example, we will use one named . dfs

V1.8.0

Note: the default database install will now include the dfs table in the same database

https://github.com/ezsystems/ezpublish-kernel/blob/master/doc/specifications/io/legacy_dfs_cluster.md#configuration

new doctrine connection for the dfs legacy_dfs_cluster
metadata handler.
doctrine:
 dbal:
 connections:
 dfs:
 driver: pdo_mysql
 host: 127.0.0.1
 port: 3306
 dbname: ezdfs
 user: root
 password: "rootpassword"
 charset: UTF8

define the flysystem handler
oneup_flysystem:
 adapters:
 nfs_adapter:
 local:
 directory: "/<path to
nfs>/var_dir/$storage_dir$"

define the ez handlers
ez_io:
 binarydata_handlers:
 nfs:
 flysystem:
 adapter: nfs_adapter
 metadata_handlers:
 dfs:
 legacy_dfs_cluster:
 connection: doctrine.dbal.dfs_connection

set the application handlers
ezpublish:
 system:
 default:
 io:
 metadata_handler: dfs
 binarydata_handler: nfs

Customizing the storage directory

eZ Publish 5.x required the NFS adapter directory to be set to partvar_dir/$storage_dir$
for the NFS path. This is no longer required with eZ Platform, but the default prefix used to serve
binary files will still match this expectation.

If you decide to change this setting, make sure you also set to a matching value.io.url_prefix
If you set the NFS adapter's directory to "/path/to/nfs/storage", use this configuration so that the
files can be served by Symfony:

ezpublish:
 system:
 default:
 io:
 url_prefix: "storage"

As an alternative, you may serve images from NFS using a dedicated web server. If in the example
above, this server listens on http://static.example.com and uses /path/to/nfs/storage as the

 document root, configure io.url_prefix as follows:

ezpublish:
 system:
 default:
 io:
 url_prefix: "http://static.example.com/"

You can read more about that on .Binary files URL handling

Web server rewrite rules

The default eZ Platform rewrite rules will let image requests be served directly from disk. With
native support, files matching have to^/var/([^/]+/)?storage/images(-versioned)?/.*
be passed through ./web/app.php

In any case, this specific rewrite rule must be placed without the ones that "ignore" image files and
just let the web server serve the files.

Apache

RewriteRule
^/var/([^/]+/)?storage/images(-versioned)?/.* /app.php
[L]

nginx

rewrite
"^/var/([^/]+/)?storage/images(-versioned)?/(.*)"
"/app.php" break;

http://static.example.com/
https://doc.ez.no/display/DEVELOPER/Repository#Repository-BinaryfilesURLhandling
https://github.com/ezsystems/ezpublish-kernel/blob/master/doc/specifications/io/legacy_dfs_cluster.md#apache
https://github.com/ezsystems/ezpublish-kernel/blob/master/doc/specifications/io/legacy_dfs_cluster.md#nginx

	Clustering

