
Repository
Introduction

Locations

A Content item could not function in the system without having a place – a Location – assigned to
it. When a new Content item is published, a new Location is automatically created and the item is
placed in it.

Together, all Locations form a tree which is the basic way of organizing Content in the system and
specific to eZ products. Every published Content item has a Location and, as a consequence, also
a place in this tree.

A Content item can have more than one Location. This can be used to have the same content in
two or more places in the tree, for example an article at the same time on the front page and in the
archive. Even in such a case, one of these places is always the Main Location.

The tree is hierarchical, with an empty root Location (which is not assigned any Content item) and
a structure of dependent Locations below it. Every Location (aside from the root) has one parent
Location and can have any number of children. There are no Locations outside this tree.

Top level Locations

Top level Locations are direct children of the root of the tree. The root has ID Location 1, is not
related to any Content items and should not be used directly.

Under this root there are preset top level Locations in each installation which cannot be deleted:

Content

"Content" is the top level Location for the actual contents of a site. This part of the tree is typically
used for organizing folders, articles, information pages, etc. This means that it contains the actual
content structure of the site, which can be viewed by selecting the "Content structure" tab in the
Content mode interface. The default ID number of the "Content" Location is 2; it references a
"Folder" Content item.

Media

"Media" is the top level Location which stores and organizes information that is frequently used by
Content items located below the "Content" node. It usually contains images, animations,
documents and other files. They can be viewed by selecting the "Media library" tab in the Content
mode interface. The default ID number of the "Media" Location is 43; it references a "Folder"
Content item.

Users

Introduction
Locations

Top level
Locations
Location
visibility

Content Relations
Sections
Permissions

Overview
Model

Persistence Cache
Configuration

Content Repository
Configuration

Configuratio
n examples
Field groups
configuratio
n
Limit of
archived
Content
item
versions

Persistence cache
configuration

Configuratio
n
Stash cache
backend
configuratio
n

Usage
Using Cache Service

Using the
cache
service
Clearing
Persistence
cache

Binary files URL
handling

IO URL
decoration
Using a
static server
for images

Regenerating URL
Aliases

Reference
Services: Public API
Signals Reference
Limitations
Reference

List of
Limitations

Extensibility
Permissions
Custom Policies

Description
PolicyProvid
er
Example
YamlPolicy
Provider
Integrating
the
PolicyProvid

A Content item receives a Location only once it has been published. This means that a freshly created draft
does not have a Location yet.

"Users" is the top level Location that contains the built-in system for managing user accounts. A
user is simply a Content item of the "User account" Content Type. The users are organized within
"User group" Content items below this Location. In other words, the "Users" Location contains the
actual users and user groups, which can be viewed by selecting the "Users" tab in the Admin
Panel. The default identification number of the "Users" Location is 5; it references a "User group"
Content item.

Other top level Locations

Another top level location, with the ID 48, corresponds to "Setup" and is not regularly used to store
content.

Location visibility

Location visibility is a mechanism which allows you to control which parts of the content tree are
available to the visitor.

Given that once a Content item is published, it cannot be un-published, limiting visibility is the only
method used to withdraw content from the website without moving it to Trash. When the Location
of a Content item is hidden, any access to it will be denied, preventing the system from displaying
it.

Visibility needs not be set individually for every Location. Instead, when a Location is hidden, all of
its descendants in the tree will be hidden as well. This means that a Location can have one of three
different visibility statuses:

 Visible
 Hidden
 Hidden by superior

By default all Locations are Visible. If a Location is made invisible manually, its status is set to
Hidden. At the same time all Locations under it will change status to Hidden by superior.

From the visitor's perspective a Location behaves the same whether its status is Hidden or Hidden
by superior – it will be unavailable in the website. The difference is that a Location Hidden by
superior cannot be revealed manually. It will only become visible once all of its ancestor Locations
are made Visible again.

A Hidden by superior status does not override a Hidden status. This means that if a Location is
Hidden manually and later one of its ancestors is Hidden as well, the first Location's status does
not change – it remains Hidden (not Hidden by superior). If the ancestor Location is made visible
again, the first Location still remains Hidden.

The way visibility works can be illustrated using the following scenarios:

Hiding a visible Location

er into
EzPublishC
oreBundle
Core
policies

SPI and API
repositories

API
SPI

Signal Slots
Signal
Slot
Example:
Updating
URL aliases

Related:

Overview of steps to set up
Cluster:

Set up DFS IO
Handler
Set up Varnish
Configure sessions

You should not add any more content directly below Location 1, but instead store any
content under one of those top-level Locations.

https://doc.ez.no/display/DEVELOPER/Steps+to+set+up+Cluster
https://doc.ez.no/display/DEVELOPER/Steps+to+set+up+Cluster
https://doc.ez.no/display/DEVELOPER/Clustering
https://doc.ez.no/display/DEVELOPER/Clustering
https://doc.ez.no/display/DEVELOPER/HTTP+Cache#HTTPCache-UsingVarnish
https://doc.ez.no/display/DEVELOPER/Sessions

When you hide a Location that was visible before, it will get the status Hidden. Underlying
Locations will be marked Hidden by superior. The visibility status of underlying Locations that were
already Hidden or Hidden by superior will not be changed.

Hiding a Location which is Hidden by superior

When you explicitly hide a Location which was Hidden by superior, it will get the status Hidden.
Since the underlying Locations are already either Hidden or Hidden by superior, their visibility
status will not be changed.

Revealing a Location with a visible ancestor

When you reveal a Location which has a visible ancestor, this Location and its children will become
visible. However, underlying Locations that were explicitly hidden by a user will retain the Hidden
status (and their children will be remain Hidden by superior).

Revealing a Location with a Hidden ancestor

When you reveal a Location that has a Hidden ancestor, it will become Visible itself. Because itnot
still has invisible ancestors, its status will change to Hidden by superior.

Visibility mechanics

The visibility mechanics are controlled by two flags: Hidden flag and Invisible flag. The Hidden flag
informs whether the node has been hidden by a user or not. A raised Invisible flag means that the
node is invisible either because it was hidden by a user or by the system. Together, the flags
represent the three visibility statuses:

Hidden flag Invisible flag Status

- - The Location is visible.

In short: a Location can only be Visible when all of its ancestors are Visible as well.

1.
2.

3.

1 1 The Location is invisible and it
was hidden by a user.

- 1 The Location is invisible and it
was hidden by the system
because its ancestor is
hidden/invisible.

Content Relations

Content items are located in a tree structure through the Locations they are placed in. However,
Content items themselves can also be related to one another.

A Relation can be created between any two Content items in the repository. This feature is typically
used in situations when you need to connect and/or reuse information that is scattered around in
the system. For example, it allows you to add images to news articles. Instead of using a fixed set
of image attributes, the images are stored as separate Content items outside the article.

There are different types of Relations available in the system. First of all, content can be related on
item or on Field level.

Relations at Field level are created using one of two special Field Types: Content relation (single)
and Content relations (multiple). As the names suggest, such Fields allow you to select one or
more other Content items in the Field value, which will be linked to these Fields. Content relation
(single) is an example of a one-to-one relationship, and Content relations (multiple) – a
one-to-many relationship.

Relations at item level can be of three different types:

Common relations are created between two Content items using the Public API.
RichText linked relations are created using a Field of the RichText type. Whenever an
internal link (a link to another Location or Content item) is inserted into a Field represented
by this Field Type, the system will automatically create a relation of this type. Note that
such a relation is automatically removed from the system when the corresponding link is
removed from the Content item.
RichText embedded relations also use a RichText Field. Whenever an Embed element is
inserted into a Field represented by this Field Type, the system will automatically create a
relation of this type, that is relate the embedded Content item to the one that is being
edited. Note that a relation of this type is automatically removed from the system when the
corresponding element is removed.

Sections

Sections are used to divide Content items in the tree into groups that are more easily manageable
by content editors. Division into Sections allows you, among others, to set permissions for only a
part of the tree.

Technically, a Section is simply a triplet: a number, a name and an identifier. Content items are
placed in Sections by being assigned the Section ID, with one item able to be in only one Section.

When a new Content item is created, its Section ID is set to the default Section (which is usually
Standard). When the item is published it is assigned to the same Section as its parent. Because
Content must always be in a Section, unassigning happens by choosing a different Section to
move it into . If a Content item has multiple Location assignments then it is always the Section ID of
the item referenced by the parent of the main Location that will be used. In addition, if the main
Location of a Content item with multiple Location assignments is changed then the Section ID of
that item will be updated.

Sections can only be removed if no Content items are assigned to them. Even then, it should be
done carefully. When a Section is deleted, it is only its definition itself that will be removed. Other
references to the Section will remain and thus the system will most likely be in an inconsistent
state.That is why removing Sections may corrupt permission settings, template output and other
things in the system.

Section ID numbers are not recycled. If a Section is removed, its ID number will not be reused
when a new Section is created.

Permissions

Permissions in Platform form one of the most advanced permissions systems around, allowing you
to define very fine-grained rights for your Editors, Visitors, Members and other users.

Overview

In the permission system a User by default does not have access to anything. To get access they
need to inherit Roles, typically assigned to the User Group they belong to.

Model

Roles

First part of the permission model is the Roles, and they consist of the following parts:

RoleLimitation *- RoleAssignment >- Role -< Policy -*< Limitation

A Role assignment can optionally have a Limitation, Role Limitation examples: SubTreeLi
mitation or SectionLimitation
A Role can have several assignments, Role example: Editor, Member, ProSubscriber
A Role consists of several Policies, Policy example: content/read/*, content/edit/* (where *
refers to full access, that is no Limitation)
A Policy optionally consists of several Limitations, Limitation example:ContentTypeLimitati

, ,on SectionLimitation OwnerLimitation

Users

Second part of the model is made up of Users and User Groups:

User -*< UserGroup

Role Policies Map
See for further informations.Role Policies Map

https://doc.ez.no/display/DEVELOPER/SubtreeLimitation
https://doc.ez.no/display/DEVELOPER/SubtreeLimitation
https://doc.ez.no/display/DEVELOPER/SectionLimitation
https://doc.ez.no/display/DEVELOPER/ContentTypeLimitation
https://doc.ez.no/display/DEVELOPER/ContentTypeLimitation
https://doc.ez.no/display/DEVELOPER/SectionLimitation
https://doc.ez.no/display/DEVELOPER/OwnerLimitation
https://doc.ez.no/display/DEVELOPER/Role+Policies+Map

A User can be member of several User Groups, User Group examples: Administrator
Users, Member Users, ProSubscriber Users

Role assignments

Last part on the permission model is the fact that Role assignments can be assigned to both Users
and User Groups:

User - RoleAssignment - UserGroup

Persistence Cache

Layers

Persistence cache can best
be described as an
implementation of SPI\Per

 thatsistence
decorates the main backend
implementation (currently:

."Legacy Storage Engine")

As shown in the illustration,
this is done in the exact
same way as the SignalSlot
feature is a custom
implementation of
API\Repository
decorating the main
Repository. In the case of
Persistence Cache, instead
of sending events on calls
passed on to the decorated
implementation, most of the
load calls are cached, and
calls that perform changes
purge the affected caches.
This is done using a Cache
service which is provided by
StashBundle; this Service
wraps around the Stash
library to provide Symfony
logging / debugging
functionality, and allows
cache handlers (Memcached

 to, Redis, Filesystem, etc.)
be configured using Symfony
configuration. For how to
reuse this Cache service in
your own custom code, see

below.

Transparent cache

Best Practice
Best practice is to avoid assigning Roles to Users directly, and instead to make sure you
model your content in a way that can be reflected in(types, structure, sections, etc.)
generic roles. Besides being much easier to manage and keep on top of security-wise,
this also makes sure your system performs best. The more Role assignments and
complex Policies you add for a given User, the more complex the search/load queries
powering the whole CMS will be, as they always take permissions into account.

With the persistence cache, just like with the HTTP cache, eZ Platform tries to follow principles of
"Transparent caching", this can shortly be described as a cache which is invisible to the end user
and to the admin/editors of eZ Platform where content is always returned "fresh". In other words,
there should be no need to manually clear the cache like it was frequently the case with eZ Publish
4.x. This is possible thanks to an interface that follows CRUD operati(Create Read Update Delete)
ons per domain, and the fact that the number of other operations capable of affecting a certain
domain is kept to a minimum.

Entity stored only once

To make the transparent caching principle as effective as possible, entities are, as much as
possible, only stored once in cache by their primary id. Lookup by a lternative identifiers (identif

, , etc.) is only cached with the identifier as cache key and primary as its cacheier remoteId id
compositionsvalue, and usually keep only the array of primary id's as their cache(list of objects)

value.

This means a couple of things:

Memory consumption is kept low
Cache purging logic is kept simple (For example: cl$sectionService->delete(3)
ears "section/3" cache entry)
Lookup by and list of objects needs several cache lookups to be able toidentifier
assemble the result value
Cache warmup usually takes several page loads to reach full as identifier is first cached,
then the object

What is cached?

Persistence cache aims at caching most calls used in common page loads,SPI\Persistence
including everything needed for permission checking and url alias lookups.

Notes:

UrlWildCardHandler is not currently cached
Currently in case of transactions this is handled very simply by clearing all cache on
rollback, this can be improved in the future if needed.
Some tree/batch operations will cause clearing all persistence cache, this will be improved
in the future when we change to a cache service cable of cache tagging.
Search is not defined as Persistence and the queries themselves are not planned to be
cached. Use which does this for you to improve scale and offload your database.Solr

For further details on which calls are cached or not, and where/how to contribute additional caches,
check out the .source

Configuration

Content Repository Configuration

The is where all your content is been stored. It is the heart of eZ Platformcontent repository
which you interact with using Public API.

To store data, the content repository that can virtually can work with anyuses a storage engine
kind of storage (RDBMS, NoSQL, etc.). eZ Publish 5 came with a relational storage engine,
compatible with v4.x: the , which is the default.Legacy storage engine

You can define several repositories within a single application. However, you can only use one per
site.

Configuration examples

Using default values

https://doc.ez.no/display/DEVELOPER/Solr+Bundle
https://github.com/ezsystems/ezpublish-kernel/tree/master/eZ/Publish/Core/Persistence/Cache

ezpublish:
 repositories:
 # Defining repository with alias "main"
 # Default storage engine is used, with default
connection
 # Equals to:
 # main: { engine: legacy, connection:
<defaultConnectionName> }
 main: ~

 system:
 # All members of my_siteaccess_group will use
"main" repository
 # No need to set "repository", it will take the
first defined repository by default
 my_siteaccess_group:
 # ...

All explicit

ezplatform.yml

If no repository is specified for a siteaccess or siteaccess group, the first defined
repository (under) will be used.ezpublish.repositories

doctrine:
 dbal:
 default_connection: my_connection_name
 connections:
 my_connection_name:
 driver: pdo_mysql
 host: localhost
 port: 3306
 dbname: my_database
 user: my_user
 password: my_password
 charset: UTF8

 another_connection_name:
 # ...

ezpublish:
 repositories:
 first_repository: { engine: legacy, connection:
my_connection_name, config: {} }
 second_repository: { engine: legacy, connection:
another_connection_name, config: {} }

 # ...

 system:
 my_first_siteaccess:
 repository: first_repository

 # ...

 my_second_siteaccess:
 repository: second_repository

Legacy storage engine

Legacy storage engine uses (Database Abstraction Layer). Database settings areDoctrine DBAL
supplied by . As such, you can refer to .DoctrineBundle DoctrineBundle's documentation

Field groups configuration

V1.3

Field groups, used in content and Content Type editing, can be configured from the repository
section. Values entered there are field group :identifiers

ezplatform.yml

ORM
Doctrine ORM is provided by default. If you want to use it, you will need to add not doct

 as a dependency in your .rine/orm composer.json

http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/
https://github.com/doctrine/DoctrineBundle
https://github.com/doctrine/DoctrineBundle/blob/master/Resources/doc/configuration.rst#doctrine-dbal-configuration

repositories:
 default:
 fields_groups:
 list: [content, features, metadata]
 default: content

These identifiers can be given human-readable values and translated. Those values will at the
moment be used when editing Content Types. The translation domain is ezplatform_fields_g

.roups
This file will define English names for field groups:

content: Content
metadata: Metadata
user_data: User data

Limit of archived Content item versions

V1.7

default_version_archive_limit controls the number of archived versions per Content item
that will be stored in the repository, by default set to 5. This setting is configured in the following
way (typically in):ezplatform.yml

ezpublish:
 repositories:
 default:
 options:
 default_version_archive_limit: 10

This limit is enforced on publishing a new version and only covers archived versions, not drafts.

Persistence cache configuration

Use of Memcached (or, experimentally, Redis) is a requirement for use in Clustering setup. For an
overview of this feature, see . Clustering

Cache service

The cache system is exposed as a "cache" service, and can be reused by any other service as

app/Resources/translations/ezplatform_fields_groups.en.y

ml

Tech Note
Current implementation uses a caching library called (via). StashStash StashBundle
supports the following cache backends: FileSystem, Memcache, APC, Sqlite, Redis and
BlackHole.

When eZ Platform changes to another PSR-6 based cache system in the future, then
configuration documented below will change.

https://doc.ez.no/display/DEVELOPER/Clustering
http://stash.tedivm.com/
https://github.com/tedivm/TedivmStashBundle

described in the section. Using Cache service

Configuration

By default, configuration currently uses , with to store FileSystem %kernel.cache_dir%/stash
cache files.

The configuration is placed in and looks like this:app/config/config.yml

stash:
 caches:
 default:
 drivers:
 - FileSystem
 inMemory: true
 registerDoctrineAdapter: false

Multi repository setup

In you can specify which cache pool you want to use on a siteaccess orezplatform.yml
sitegroup level. The following example shows use in a sitegroup:

ezpublish:
 system:
 # "site_group" refers to the group configured in
site access
 site_group:
 # "default" refers to the cache pool, the
one configured on stash.caches above
 cache_pool_name: "default"

Stash cache backend configuration

General settings

To check which cache settings are available for your installation, run the following command in your

Default config.yml

Note for "inMemory" cache with long running scripts
Use with caution, and avoid it completely for long running scripts for theinMemory
following reasons:

It does not have any limits, so can result in the application running out of PHP
memory.
Its cache pool is by design a PHP variable and is not shared across
requests/processes/servers, so data becomes stale if any other concurrent
activity happens towards the repository.

ezplatform.yml site group setting

One cache pool for each repository
If your installation has several repositories , make sure every group of sites(databases)
using different repositories also uses a different cache pool.

terminal:

php app/console config:dump-reference stash

FileSystem

This cache backend uses the local filesystem, by default the Symfony cache folder. As this is per
server, it !does not support multi server () setupscluster

Available settings

path The path where the cache is placed; default is
, effectively %kernel.cache_dir%/stash ap

p/cache/<env>/stash

dirSplit Number of times the cache key should be split
up to avoid having too many files in each
folder; default is 2.

filePermissions The permissions of the cache file; default is
0660.

dirPermissions The permission of the cache file directories
(see dirSplit); default is 0770.

memKeyLimit Limit on how many key to path entries are kept
in memory during execution at a time to avoid
having to recalculate the path on key lookups;
default is 200.

keyHashFunction Algorithm used for creating paths; default is
md5. Use crc32 on Windows to avoid path
length issues.

We strongly discourage you from storing cache files on NFS, as it defeats the
purpose of the cache: speed.

Issues with Microsoft Windows
If you are using a Windows OS, you may encounter an issue regarding long paths for

. The paths are long because Stash uses md5 to generate uniquecache directory name
keys that are sanitized really quickly.

Solution is to used by Stash.change the hash algorithm

stash:
 caches:
 default:
 drivers:
 - FileSystem
 inMemory: true
 registerDoctrineAdapter: false
 FileSystem:
 keyHashFunction: 'crc32'

This configuration is only recommended for Windows users.

Note: You can also define the where you want the cache files to be generated to be path

Specifying key hash function

https://doc.ez.no/display/DEVELOPER/Clustering

FileSystem cache backend troubleshooting

By default, Stash Filesystem cache backend stores cache to a sub-folder named after the
environment (,). This can lead to the following issue: ifi.e. app/cache/dev app/cache/prod
different environments are used for operations, persistence cache (manipulating content, mostly)
will be affected and cache can become inconsistent.

To prevent this, there are 2 solutions:

1. Manual

Always use the same environment, for web, command line, cronjobs etc.

2 . Share stash cache across Symfony environments (prod / dev / ..)

Either by using another Stash cache backend, or by setting Stash to use a shared cache folder that
does not depend on the environment.

In :ezplatform.yml

stash:
 caches:
 default:
 FileSystem:
 path: "%kernel.root_dir%/cache/common"

This will store stash cache to app/cache/common.

APC & APCu

This cache backend is using shard memory with APC's user cache feature. As this is per server, it
.does not support multi server () setupscluster

Please also note that the default value for is 128MB. However, 256MB isapc.shm_size
recommended for APC to work properly. For more details please refer to the APC configuration

.manual

Available settings

ttl The time to live of the cache in seconds;
default is 500 (8.3 minutes)

namespace A namespace to prefix cache keys with to
avoid key conflicts with other eZ Platform sites
on same eZ Platform installation; default is nu

.ll

Redis

able to get even shorter system path for cache files.

Not supported because of following limitation
As APC(u) user cache is not shared between processes, it is not possible to clear the
user cache from CLI, even if you set . That is why publishing to Onapc.enable_cli
content from a command line script won't let you properly clear SPI Persistence cache.

https://doc.ez.no/display/DEVELOPER/Clustering
http://www.php.net/manual/en/apc.configuration.php#ini.apc.shm-size
http://www.php.net/manual/en/apc.configuration.php#ini.apc.shm-size

EXPERIMENTAL

This cache backend is using , via . ThiRedis, a in-memory data structure store Redis pecl extension
s is an alternative cache solution for , besides using Memcached.multi server () setupscluster

Available settings

servers Array of Redis servers:

 server : Host or IP of your Redis server
: Port that Redis is listening to (default: port

6379)
: Optional float value of connection ttl

timeout in seconds
 socket : Optional boolean value to specify if

server refers to a socket (default: false)

password Optional setting if there is a password to
connection to a given Redis server in plain text
over the network.

database Optional setting to specify a given Redis
database to use.

Example

stash:
 caches:
 default:
 drivers: [Redis]
 Redis:
 servers:
 -
 server: 'redis1.ez.no'
 port: 6379
 -
 server: 'redis2.ez.no'
 port: 6379

Memcache(d)

This cache backend is using . This is the mainMemcached, a distributed caching solution
supported cache solution for , besides using Redis.multi server () setupscluster

Available settings

config.yml example

Note
Stash supports both the and extensions. onlyphp-memcache php-memcached However
php-memcached is officially supported as php-memcache is missing many features and
is less stable.

http://redis.io/
https://pecl.php.net/package/redis
https://doc.ez.no/display/DEVELOPER/Clustering
http://memcached.org/
https://doc.ez.no/display/DEVELOPER/Clustering
http://php.net/memcache
http://php.net/memcached

servers Array of Memcached servers, with host/IP, port
and weight

 server : Host or IP of your Memcached
server

: Port that Memcached is listening to port
(defaults to 11211)

: Weight of the server, when using weight
several Memcached servers

prefix_key A namespace to prefix cache keys with to
avoid key conflicts with other eZ Platform sites
on same eZ Platform installation (default is an
empty string).
Must be the same on all servers with the same
installation. See Memcached prefix_key

 option *

compression default true. See Memcached compression
 option *

libketama_compatible default false. See Memcached
 libketama_compatible option *

buffer_writes default false. See Memcached buffer_writes
 option *

binary_protocol default false. See Memcached binary_protocol
 option *

no_block default false. See Memcached no_block
 option *

tcp_nodelay default false. See Memcached tcp_nodelay
 option *

connection_timeout default 1000. See Memcached
 connection_timeout option *

retry_timeout default 0. See Memcached retry_timeout
 option *

send_timeout default 0. See Memcached send_timeout
 option *

recv_timeout default 0. See Memcached recv_timeout
 option *

poll_timeout default 1000. See Memcached poll_timeout
 option *

cache_lookups default false. See Memcached cache_lookups
 option *

server_failure_limit default 0. See PHP Memcached
 documentation *

socket_send_size See *Memcached socket_send_size option

socket_recv_size See *Memcached socket_recv_size option

serializer See *Memcached serializer option

hash See *Memcached hash option

distribution Specifies the method of distributing item keys
to the servers. See Memcached distribution

 *option

* All settings except are only available with memcached PHP extension. For moreservers
information on these settings and which version of php-memcache they are available in, see: d http:

http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-prefix-key
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-prefix-key
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-compression
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-compression
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-libketama-compatible
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-libketama-compatible
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-buffer-writes
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-buffer-writes
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-binary-protocol
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-binary-protocol
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-no-block
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-no-block
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-tcp-nodelay
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-tcp-nodelay
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-connection-timeout
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-connection-timeout
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-memcached-timeout
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-memcached-timeout
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-send-timeout
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-send-timeout
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-recv-timeout
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-recv-timeout
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-poll-timeout
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-poll-timeout
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-cache-lookups
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-cache-lookups
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-server-failure-limit
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-server-failure-limit
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-socket-send-size
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-socket-recv-size
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-serializer
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-hash
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-distribution
http://www.php.net/manual/en/memcached.constants.php#memcached.constants.opt-distribution
http://php.net/Memcached

 //php.net/Memcached

Example with Memcache(d)

Note that contains the default stash configuration. To apply theapp/config/config.yml
configuration below, make sure you update the existing configuration, or remove it if you want to
use another configuration file.

stash:
 caches:
 default:
 drivers: [Memcache]
 inMemory: true
 registerDoctrineAdapter: false
 Memcache:
 prefix_key: ezdemo_
 retry_timeout: 1
 servers:
 -
 server: 127.0.0.1
 port: 11211

Usage

Using Cache Service

Using the internal cache service allows you to use an interface and to not have to care whether the
system has been configured to place the cache in Memcached or on File system. And as eZ
Platform requires that instances use a cluster-aware cache in Cluster setup, you can safely assume
your cache is shared across all web servers.(and invalidated)

When using Memcache cache backend, you use inMemory to reduce network trafficmay
as long as you are aware of its limitations mentioned above.

Connection errors issue
If memcached does display connection errors when using the default (ascii) protocol,
then switching to binary protocol sh(in the stash configuration and memcached daemon)
ould resolve the issue.

Interface will change in the future
Current implementation uses a caching library called , via . We plan toStash StashBundle
move to a PSR-6 compatible cache service capable of supporting cache Tagging and
multi get/set in the future, when that happens the interface of the cache service will
change!

Use unique vendor prefix for Cache key!
When reusing the cache service within your own code, it is very important to not conflict
with the cache keys used by others. That is why the example of usage below starts with
a unique "myApp" key. For the namespace of your own cache, you must do the same!
So never clear cache using the cache service without your key specified, otherwise you'll
clear all cache.

http://php.net/Memcached
http://stash.tedivm.com/
https://github.com/tedivm/TedivmStashBundle

Get Cache service

Via Dependency injection

In your Symfony services configuration you can simply define that you require the "cache" service
in your configuration like so:

myApp.myService:
 class: %myApp.myService.class%
 arguments:
 - @ezpublish.cache_pool

The "cache" service is an instance of the following class: Tedivm\StashBundle\Service\Cach
eService

Via Symfony Container

Like any other service, it is also possible to get the "cache" service via container like so:

/** @var $cacheService
\Tedivm\StashBundle\Service\CacheService */
$cacheService = $container->get('ezpublish.cache_pool');

Using the cache service

Example usage of the cache service:

$cacheItem = $cacheService->getItem('myApp', 'object',
$id);
 $myObject = $cacheItem->get();
 if ($cacheItem->isMiss()) {
 $myObject =
$container->get('my_app.backend_service')->loadObject($i
d)
 $cacheItem->set($myObject);
 }
 return $myObject;

For more info on usage, take a look at .Stash's documentation

Clearing Persistence cache

Persistence cache uses a separate Cache Pool decorator which by design prefixes cache keys
with "ez_spi". Clearing persistence cache can thus be done in the following way:

yml configuration

Getting the cache service in PHP

Example

http://stash.tedivm.com/

/** @var $cacheService
\eZ\Publish\Core\Persistence\Cache\CacheServiceDecorator
*/
$cacheService =
$container->get('ezpublish.cache_pool.spi.cache.decorato
r');

// To clear all cache
$cacheService->clear();

// To clear a specific cache item (check source code in
eZ\Publish\Core\Persistence\Cache*Handlers for further
info)
$cacheService->clear('content', 'info', $contentId);

// Stash cache is hierarchical, so you can clear all
content/info cache like so:
$cacheService->clear('content', 'info');

Binary files URL handling

IO URL decoration

By default, images and binary files referenced by content will be served from the same server as
the application, like /var/ezdemo_site/storage /images/3/6/4/6/6463-1-eng-GB/ki

. This is the default semantic configuration: dding.png

ezpublish:
 system:
 default:
 io:
 url_prefix: "var_dir/$storage_dir$"

 and are dynamic, , and will be replacedvar_dir $storage_dir$ siteaccess-aware settings
by those settings value in the execution context.

Using a static server for images

One common use-case is to use an optimized nginx to serve images in an optimized way. The
example image above could be made available as http://static.example.com/ images/3

, by setting up a server that uses /6/4/6/6463-1-eng-GB/kidding.png ezpublish/ezpub
. The eZ Platform configuration would be as follows:lish_legacy/var/ezdemo_site/storage

getting the cache service in php

URL decorators are an eZ Platform features. If an image field is displayed via a legacy
callback or legacy template, no decoration will be applied.

https://doc.ez.no/display/DEVELOPER/SiteAccess#SiteAccess-DynamicSettingsInjection
http://static.example.com/

ezpublish:
 system:
 default:
 io:
 url_prefix: "http://static.example.com/"

Internals

Any returned by the public API is prefixed with the value of this setting, internallyBinaryFile
stored as ..url_prefixezsettings.scope.io

Dynamic container settings

Those settings are siteaccess-aware.

io.url_prefix

Default value: var_dir/$storage_dir$
Example: /var/ezdemo_site/storage

 Used to configure the default URL decorator service (.default_url_decezpublish.core.io
 orator , used by all binarydata handlers to generate the URI of loaded files. It is always

interpreted as an absolute URI, meaning that unless it contains a scheme (ftp://), it will behttp://,
prepended with a '/'.

io.legacy_url_prefix

Default value: var_dir/$storage_dir$
Example: var/ezdemo_site/storage

Used by the legacy storage engine to convert images public URI to a format it understands. Unlike
io.url_prefix, it is not an absolute link. Cannot be overridden using semantic configuration. Changin
g this value will break compatibility for the legacy backoffice.

io.root_dir

Example: %ezpublish_legacy.root_dir%/var_dir/$storage_dir$
Default value: /var/www/ezpublish/ezpublish_legacy/var/ezdemo_site/storage

Physical path where binary files are stored on disk. Cannot be overridden using semantic
configuration. Changing this value will break compatibility for the legacy backoffice.

Services

URL decorators

An UrlDecorator decorates and undecorates a given string (url) in some way. It has two mirror
methods: and .decorate undecorate

Two implementations are provided: , and . They both add a prefix to aPrefix AbsolutePrefix

Legacy compatiblity

Legacy still requires non-absolute path to store images (var/site/storage/images/etc.). In
order to work around this, a , that converts back and forth betweenUrlRedecorator
the legacy uri prefix and the one in use in the application has been added. It is used in all
places where a legacy URL is returned/expected, and takes care of making sure the
value is as expected.

http://ezsettings.scope.io
http://ezpublish.core.io
https://github.com/ezsystems/ezpublish-kernel/blob/master/doc/specifications/io/io_url_decoration.md#services

URL, but will ensure that unless the prefix is an external URL, the result will beAbsolutePrefix
prepended with /.

Three UrlDecorator services are introduced:

.prefix_url_decoratorezpublish.core.io used by the binarydata handlers to
decorate all uris sent out by the API. Uses AbsolutePrefix.

.image_fieldtype.legacy_url_decoratorezpublish.core.io used via the
UrlRedecorator (see below) by various legacy elements (Converter, Storage Gateway,
etc.) to generate its internal storage format for uris. Uses a Prefix, not an AbsolutePrefix,
meaning that no leading / is added.

In addition, a UrlRedecorator service, .image_fieldtype.legacy_url_ezpublish.core.io
, uses both decorators above to convert URIs between what is used on the newredecorator

stack, and what format legacy expects (relative urls from the ezpublish root).

Regenerating URL Aliases

The command ezplatform:regenerate:legacy_storage_url_aliases command regenerates URL
aliases for Locations and migrates existing custom Location and global URL aliases to a separate
database table. The separate table must be named and should__migration_ezurlalias_ml
be created manually to be identical (but empty) as the existing table before theezurlalias_ml
command is executed.

After the script finishes, to complete migration the table should be renamed to mezurlalias_ml
anually. Using available options for argument, you can back up custom Location andaction
global URL aliases separately and inspect them before restoring them to the migration table. They
will be stored in backup tables named and __migration_backup_custom_alias __migratio

 (created automatically).n_backup_global_alias

It is also possible to skip custom Location and global URL aliases altogether and regenerate only
automatically created URL aliases for Locations (use the action to achieve this).autogenerate
During the script execution the database should not be modified. Since this script can potentially
run for a very long time, to avoid memory exhaustion run it in production environment using the --

 switch.env=prod

Reference

Services: Public API

The Public API exposes Symfony services for all of its repository services.

Service id Type

ezpublish.api.service.content eZ\Publish\API\Repository\ContentS
ervice

ezpublish.api.service.content_type eZ\Publish\API\Repository\ContentT
ypeService

ezpublish.api.service.location eZ\Publish\API\Repository\Location
Service

ezpublish.api.service.url_alias eZ\Publish\API\Repository\UrlAlias
Service

ezpublish.api.service.field_type eZ\Publish\API\Repository\FieldTyp
eService

ezpublish.api.service.language eZ\Publish\API\Repository\Language

ezpublish.api.service.object_state eZ\Publish\API\Repository\ObjectSt
ate

ezpublish.api.service.role eZ\Publish\API\Repository\Role

http://ezpublish.core.io
http://ezpublish.core.io
http://ezpublish.core.io

ezpublish.api.service.search eZ\Publish\API\Repository\Search

ezpublish.api.service.section eZ\Publish\API\Repository\Section

ezpublish.api.service.trash eZ\Publish\API\Repository\Trash

ezpublish.api.service.url_wildcard eZ\Publish\API\Repository\UrlWildc
ard

ezpublish.api.service.user eZ\Publish\API\Repository\User

Signals Reference

You can find the reference for that you can listen to, triggered by ("Public")all available signals
Repository API in eZ Platform, in their dedicated page: .Signals Reference

Limitations Reference

Limitations are crucial building blocks of the in eZ Platform. They provide thepermissions system
restrictions you can apply to a given access right to limit the right according to certain conditions.

Limitations consist of two parts:

Limitation (Value)
LimitationType

Certain limitations also serve as RoleLimitations, which means they can be used to limit the rights
of a Role assignment. Currently this covers and limitations.Subtree Section

Limitation represents the value, while deals with the business logicLimitationType
surrounding how it actually works and is enforced.

 have two modes of operation in regards to permission logic (see LimitationTypes eZ\Publish
 interface for more info):\SPI\Limitation\Type

Method Use

evaluate Evaluating if the user has access to a given
object in a certain context (for instance the
context can be Locations when the object is Co

), under the condition of the ntent Limitatio
 value(s).n

getCriterion Generates a using Criterion Limitation
value and current user which SearchService
by default applies to search criteria for filtering
search based on permissions.

List of Limitations

See List of Limitations

Extensibility

Permissions

Two parts of the permissions system are extensible from a programmatic perspective: Policies and
Limitations

Policies: , Custom Policies can be added for use in your own code custom Policy example:
comment/create
Limitations: You can extend existing Policies, and hence extend the permissions of the
CMS, example could be adding a SubscriptionLimitation to content/read Policy

https://doc.ez.no/display/DEVELOPER/Signals+Reference
https://doc.ez.no/display/DEVELOPER/Repository#Repository-Permissions
https://doc.ez.no/display/DEVELOPER/List+of+Limitations
https://doc.ez.no/display/DEVELOPER/List+of+Limitations

Custom Policies

Description

eZ content repository uses the concept of Roles and Policies in order to authorize a user to do
something (e.g. read content).

A Role is composed of Policies and can be assigned to a User or a User Group.
A Policy is composed of a combination of and (e.g. , module function content/read co

 being the module and being the function).ntent read
Depending on and combination, a Policy can also be composed ofmodule function
Limitations.

It is possible for any bundle to expose available Policies via a which can bePolicyProvider
added to EzPublishCoreBundle's DIC extension.

PolicyProvider

A is an object providing a hash containing declared modules, functions andPolicyProvider
limitations.

Each Policy provider provides a collection of permission .modules
Each module can provide (e.g. "content/read": "content" is the module, "read" isfunctions
the function)
Each function can provide a collection of Limitations.

Policies configuration hash contains declared these modules, functions and Limitations.
First level key is the module name, value is a hash of available functions, with function name as
key.
Function value is an array of available Limitations, identified by the alias declared in LimitationType
service tag.
If no Limitation is provided, value can be or an empty array.null

[
 "content" => [
 "read" => ["Class", "ParentClass", "Node",
"Language"],
 "edit" => ["Class", "ParentClass", "Language"]
],
 "custom_module" => [
 "custom_function_1" => null,
 "custom_function_2" => ["CustomLimitation"]
],
]

Example

Limitations need to be implemented as and declared as serviceslimitation types
identified with tag. Name provided in the hash for eachezpublish.limitationType
Limitation is the same value set in attribute in the service tag.alias

namespace Acme\FooBundle\AcmeFooBundle\Security;

use
eZ\Bundle\EzPublishCoreBundle\DependencyInjection\Config
uration\ConfigBuilderInterface;
use
eZ\Bundle\EzPublishCoreBundle\DependencyInjection\Securi
ty\PolicyProvider\PolicyProviderInterface;

class MyPolicyProvider implements
PolicyProviderInterface
{
 public function addPolicies(ConfigBuilderInterface
$configBuilder)
 {
 $configBuilder->addConfig([
 "custom_module" => [
 "custom_function_1" => null,
 "custom_function_2" =>
["CustomLimitation"],
],
]);
 }
}

YamlPolicyProvider

An abstract class based on YAML is provided: eZ\Bundle\EzPublishCoreBundle\Dependen
 cyInjection\Security\PolicyProvider\YamlPolicyProvider .

 It defines an abstract getFiles() method.

Extend and implement to return absolute paths to yourYamlPolicyProvider getFiles()
YAML files.

namespace Acme\FooBundle\AcmeFooBundle\Security;

use
eZ\Bundle\EzPublishCoreBundle\DependencyInjection\Securi
ty\PolicyProvider\YamlPolicyProvider;

class MyPolicyProvider extends YamlPolicyProvider
{
 protected function getFiles()
 {
 return [
 __DIR__ .
'/../Resources/config/policies.yml',
];
 }
}

custom_module:
 custom_function_1: ~
 custom_function_2: [CustomLimitation]

Extending existing policies

A may provide new functions to a module, and additional Limitations to anPolicyProvider
existing function.
It is however strongly encouraged to add functions to your own Policy modules.

Integrating the PolicyProvider into EzPublishCoreBundle

For a PolicyProvider to be active, it must be properly declared in EzPublishCoreBundle.
A bundle just has to retrieve CoreBundle's DIC extension and call addPolicyProvider() . This

 must be done in the bundle's build() method.

namespace Acme\FooBundle\AcmeFooBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class AcmeFooBundle extends Bundle
{
 public function build(ContainerBuilder $container)
 {
 parent::build($container);

 // ...

 // Retrieve "ezpublish" container extension.
 $eZExtension =
$container->getExtension('ezpublish');
 // Add the policy provider.
 $eZExtension->addPolicyProvider(new
MyPolicyProvider());
 }
}

Core policies

 Policies used internally in repository services are defined in EzPublishCoreBundle/Resource
 s/config/policies.yml .

SPI and API repositories

Those repositories are read-only split of , made available toezsystems/ezpublish-kernel
make dependencies easier and more lightweight.

AcmeFooBundle/Resources/config/policies.yml

It is not possible to remove an existing module, function or limitation from a Policy.

https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Bundle/EzPublishCoreBundle/Resources/config/policies.yml
https://github.com/ezsystems/ezpublish-kernel/blob/master/eZ/Bundle/EzPublishCoreBundle/Resources/config/policies.yml

API

This package is a split of the eZ Publish 5 public API. It includes the and services interfaces dom
 from the namespace.ain objects eZ\Publish\API

It offers a lightweight way to make your project depend on the eZ API and Domain objects, without
depending on the whole ezpublish-kernel.
The repository is read-only, automatically updated from https://github.com/ezsystems/ezpublish-ker

.nel

Requiring ezpublish-api in your project:

"require": {
 "ezsystems/ezpublish-api": "~5.0"
}

SPI

This package is a split of the eZ Publish 5 SPI (persistence interfaces).

It can be used as a dependency, instead of the whole ezpublish-kernel, by packages implementing
, or by any package that requires custom eZ Publish storage engines classes from the

.eZ\Publish\SPI namespace

The repository is read-only, automatically updated from https://github.com/ezsystems/ezpublish-ker
.nel

Requiring ezpublish-api in your project:

"require": {
 "ezsystems/ezpublish-spi": "~5.0"
}

Signal Slots

The Signal-Slot system provides a means for realizing loosely coupled dependencies in the sense
that a code entity A can react on an event occurring in code entity B, without A and B knowing each
other directly. This works by dispatching event information through a central third instance, the so
called dispatcher:

In the shown schematics, object B and one other object are interested in a certain signal. B is a
so-called Slot that can be announced to be interested in receiving a Signal (indicated by the
circular connector to the dispatcher). Object A now sends the corresponding Signal. The
Dispatcher takes care of realizing the dependency and informs the Slot A (and one other Slot)
about the occurrence of the Signal.

Signals roughly equal events, while Slots roughly equal event handlers. An arbitrary number (0…n)
of Slots can listen for a specific Signal. Every object that receives the Dispatcher as a dependency
can send signals. However, the following conditions apply (that typically do not apply to event
handling systems):

A Slot cannot return anything to the object that issued a signal
It is not possible for a Slot to stop the propagation of a Signal, i.e. all listening Slots will
eventually receive the Signal

Those two conditions allow the asynchronous processing of Slots. That means: It is possible to
determine, by configuration, that a Slot must not receive a Signal in the very same moment it
occurs, but to receive it on a later point in time, maybe after other Signals from a queue have been
processed or even on a completely different server.

https://github.com/ezsystems/ezpublish-kernel
https://github.com/ezsystems/ezpublish-kernel
https://github.com/ezsystems/ezpublish-kernel
https://github.com/ezsystems/ezpublish-kernel

Signal

A Signal represents a specific event, e.g. that a content version has been published. It consists of
information that is significant to the event, e.g. the content ID and version number. Therefore, a
Signal is represented by an object of a class that is specific to the Signal and that extends from eZ

. The full qualified name of the Signal class is used to\Publish\Core\SignalSlot\Signal
uniquely identify the Signal. For example, the class eZ\Publish\Core\SignalSlot\Signal\C

 identifies the example Signal.ontentService\PublishVersionSignal

In order to work properly with asynchronous processing, Signals must not consist of any logic and
must not contain complex data structures (such as further objects and resources). Instead, they
must be exportable using the method, so that it is possible to transfer a Signal to__set_state()
a different system.

Slot

A Slot extends the system by realizing functionality that is executed when a certain Signal occurs.
To implement a Slot, you must create a class that derives from eZ\Publish\Core\SignalSlot

. The full qualified name of the Slot class is also used as the unique identifier of the Slot. The\Slot
Slot base class requires you to implement the single method . When your Slot isreceive()
configured to listen to a certain Signal and this Signal occurs, the method of your Slotreceive()
is called.

Inside the method of your Slot you can basically realize any kind of logic. However, itreceive()
is recommended that you only dispatch the action to be triggered to a dedicated object. This allows
you to trigger the same action from within multiple Slots and to re-use the implementation from a
completely different context.

Note that, due to the nature of Signal-Slot, the following requirements must be fulfilled by your Slot
implementation:

A Slot must not return anything to the Signal issuer
A Slot must be aware that it is potentially executed delayed or even on a different server

Important: A single Slot should not take care of processing more than one Signal. Instead, if
you need to trigger same or similar actions as different Signals occur. you should
encapsulate these actions into a dedicated class, of which your Slots receive an instance to
trigger this action.

Example: Updating URL aliases

Updating URL aliases is a typical process that can be realized through a Signal-Slot extension for
different reasons:

The action must be triggered on basis of different events (e.g. content update, location
move, etc.)
Direct implementation would involve complex dependencies between otherwise unrelated
services
The action is not critical to be executed immediately, but can be made asynchronous, if
necessary

As a first step it needs to be determined for which Signals we need to listen in order to update URL
aliases. Some of them are:

eZ\Publish\Core\SignalSlot\Signal\ContentService\PublishVersionSig
nal
eZ\Publish\Core\SignalSlot\Signal\LocationService\CopySubtreeSignal
eZ\Publish\Core\SignalSlot\Signal\LocationService\MoveSubtreeSignal
…

There are of course additional Signals that trigger an update of URL aliases, but these are left out

Note
Signals can theoretically be sent by any object that gets hold of a SignalDispatcher (eZ\

). However, at a first stage, Publish\Core\SignalSlot\SignalDispatcher Signal
s are only sent by special implementations of the Public API to indicate core

. These services must and will be used by default and will wrap the originalevents
service implementations.

1.
2.

for simplicity here.

Now that we identified some Signals to react upon, we can start implementing Slots for these
signals. For the first Signal, which is issued as soon as a new version of Content is published, there
exists a method in for exactlyeZ\Publish\SPI\Persistence\Content\UrlAlias\Handler
that purpose: . The Signal contains the ID of the content itempublishUrlAliasForLocation()
and its newly published version number. Using this information, the corresponding Slot can fulfill its
purposes with the following steps:

Load the corresponding content and its locations
Call the URL alias creation method for each location

To achieve this, the Slot has 2 dependencies:

eZ\Publish\SPI\Persistence\Content\Handler
to load the content itself in order to retrieve the names
eZ\Publish\SPI\Persistence\Content\Location\Handler
to load the locations
eZ\Publish\SPI\Persistence\Content\UrlAlias\Handler
to create the aliases for each location

So, a stub for the implementation could look like this:

namespace Acme\TestBundle\Slot;

use eZ\Publish\Core\SignalSlot\Slot as BaseSlot;
use eZ\Publish\API\Repository\Repository;
use eZ\Publish\SignalSlot\Signal;

class CreateUrlAliasesOnPublishSlot extends BaseSlot
{
 /**
 * @var \eZ\Publish\API\Repository\Repository
 */
 private $repository;
 public function __construct(Repository $repository
)
 {
 $this->repository = $repository;
 }

 public function receive(Signal $signal)
 {
 if (!$signal instanceof
Signal\ContentService\PublishVersionSignal)
 {
 return;
 }
 // Load content
 // Load locations
 // Create URL aliases
 }
}

1.
2.

In order to make the newly created Slot react on the corresponding Signal, the following
steps must be performed:

Make the Slot available through the Symfony service container as a service
Register the Slot to react to the Signal of type eZ\Publish\Core\SignalSlo
t\Signal\ContentService\PublishVersionSignal

See the recipe in the developer cookbook for more information.Listening to Core events

https://doc.ez.no/display/DEVELOPER/Listening+to+Core+events

	Repository

