
1.
2.
3.
4.

Design
Introduction

This page covers design in eZ Platform in a general aspect. If you want to learn about how to
display content and build your content templates, you might want to check .Content Rendering

To apply a template to any part of your webpage, you need three (optionally four) elements:

An entry in the configuration that defines which template should be used in what situation
The template file itself
Assets used by the template (for example, CSS or JS files, images, etc.)
(optional) A custom controller used when the template is read which allows you more
detailed control over the page.

Configuration

Each template must be mentioned in a configuration file together with a definition of the situation in
which it is used. You can use the file located in the folder, orezplatform.yml app/config/
create your own separate configuration file in that folder that will list all your templates.

A short configuration file can look like this:

In this topic:

Introduction
Configuration

Template file
Assets
Controller

Usage
Creating a new
design using Bundle
Inheritance

Creating a
bundle
Configuring
bundle to
inherit from
another
Known
limitation

Reference
Twig Helper

Legacy
Listing the available
parameters
Retrieving legacy
information

If you decide to create a new configuration file, you will need to import it by including an
import statement in . Add the following code at the beginning of ezplatform.yml ezpl

:atform.yml

imports:
 - { resource: <your_file_name>.yml }

If you are using the recommended .yml files for configuration, here are the basic rules for
this format:

The configuration is based on pairs of a key and its value, separated by a colon,
presented in the following form: key: value. The value of the key may contain further
keys, with their values containing further keys, and so on. This hierarchy is marked using
indentation – each level lower in the hierarchy must be indented in comparison with its
parent.

https://doc.ez.no/display/DEVELOPER/Content+Rendering

ezpublish:
 system:
 default:
 user:
 layout: pagelayout.html.twig
 content_view:
 full:
 article:
 template: full\article.html.twig
 match:
 Identifier\ContentType:
[article]
 blog_post:
 controller:
app.controller.blog:showBlogPostAction
 template:
full\blog_post.html.twig
 match:
 Identifier\ContentType:
[blog_post]
 line:
 article:
 template: line\article.html.twig
 match:
 Identifier\ContentType:
[article]

This is what individual keys in the configuration mean:

 ezpublish and are obligatory at the start of any configuration file which defines system
views.

 default defines the siteaccess for which the configuration will be used. "default", as the
name suggests, determines what views are used when no other configuration is chosen.
You can also have separate keys defining views for other siteaccesses.

 user and point to the main template file that is used in any situation where no layout
other template is defined. All other templates extend this one. See for morebelow
information.

 content_view defines the view provider.

 full and determine the kind of view to be used (see below). line
 article and are the keys that start the configuration for one individual case blog_post

of using a template. You can name these keys any way you want, and you can have as
many of them as you need.

 template names the template to be used in this case, including the folder it is stored in
(starting from).app/Resources/views

 controller defines the controller to be used in this case. Optional, if this key is absent,
the default controller is used.

 match defines the situation in which the template will be used. There are different criteria
which can be used to "match" a template to a situation, for example a Content Type, a
specific Location ID, Section, etc. You can view the full list of matchers here: View provider

. You can specify more than one matcher for any template; the matchers will configuration
be linked with an AND operator.

In the example above, three different templates are mentioned, two to be used in full view, and one

Sample configuration file

In earlier versions of eZ CMS, was used as the view provider. It is nowlocation_view
deprecated.

https://doc.ez.no/display/DEVELOPER/Content+Rendering#ContentRendering-Viewproviderconfiguration
https://doc.ez.no/display/DEVELOPER/Content+Rendering#ContentRendering-Viewproviderconfiguration

in line view. Notice that two separate templates are defined for the "article" Content Type. They use
the same matcher, but will be used in different situations – one when an Article is displayed in full
view, and one in line view. Their templates are located in different folders. The line template will
also make use of a custom controller, while the remaining cases will employ the default one.

Template file

Templates in eZ Platform are written in the Twig templating language.

The configuration described above lets you select one template to be used in a given situation, but
this does not mean you are limited to only one file per case. It is possible to include other templates
in the main template file. For example, you can have a single template for the footer of a page and
include it in many other templates. Such templates do not need to be mentioned in the
configuration .yml file.

The main template for your webpage (defined per siteaccess) is placed in the pagelayout.html
 file. This template will be used by default for those parts of the website where no other.twig

templates are defined.

A file exists already in Demo Bundles, but if you are using a cleanpagelayout.html.twig
installation, you need to create it from scratch. This file is typically located in a bundle, for example
using the built-in AppBundle: .src/AppBundle/Resources/views The name of the bundle
must the added whenever the file is called, like in the example below.

Any further templates will extend and modify this one, so they need to start with a line like this:

{% extends "AppBundle::pagelayout.html.twig" %}

Full, line and other views

Each Content item can be rendered differently, using different templates, depending on
the type of view it is displayed in. The default, built-in views are (used when thefull
Content item is displayed by itself, as a full page), (used when it is displayed as anline
item in the list, for example a listing of contents of a folder), and (used when oneembed
Content item is embedded in another). Other, custom view types can be created, but
only these three have built-in controllers in the system.

See for more details. View provider configuration

Twig templates in short

At its core, a Twig template is an HTML frame of the page that will be displayed. Inside
this frame you define places (and manners) in which different parts of your Content items
will be displayed (rendered).

Most of a Twig template file can look like an ordinary HTML file. This is also where you
can define places where Content items or their fields will be embedded.

See in Symfony documentation for more information on includingIncluding Templates
templates.

Although using AppBundle is recommended, you could also place the template files
directly in . Then the files<installation_folder>/app Resources/views/
could be referenced in code without any prefix. See for more information.Best Practices

https://doc.ez.no/display/DEVELOPER/Content+Rendering#ContentRendering-Viewproviderconfiguration
http://symfony.com/doc/current/book/templating.html#including-templates
https://doc.ez.no/display/DEVELOPER/Best+Practices

Templates can be extended using a Twig tag. This tag lets you define a named section in block
the template that will be filled in by the child template. For example, you can define a "title" block in
the main template. Any child template that extends it can also contain a "title" block. In this case
the contents of the block from the child template will be placed inside this block in the parent
template (and override what was inside this block):

{# ... #}
 <body>
 {% block title %}
 <h1>Default title</h1>
 {% endblock %}
 </body>
{# ... #}

{% extends "AppBundle::pagelayout.html.twig" %}
{% block title %}
 <h1>Specific title</h1>
{% endblock %}

In the simplified example above, when the template is used, the "title" blockchild.html.twig
from it will be placed in and will override the "title" block from the main template – so "Specific title"
will be displayed instead of "Default title."

Embed content in templates

Now that you know how to create a general layout with Twig templates, let's take a look at the ways
in which you can render content inside them.

There are several ways of placing Content items or their Fields inside a template. You can do it
using one of the . Twig functions described in detail here

As an example, let's look at one of those functions: . It renders one selected Field ez_render_field
of the Content item. In its simplest form this function can look like this:

{{ ez_render_field(content, 'description') }}

This renders the value of the Field with identifier "description" of the current Content item (signified
by "content"). You can additionally choose a special template to be used for this particular Field:

Template paths
In short, the part of the path is automatically added whenever aResources/views
template file is referenced. What you need to provide is the bundle name, name of any
subfolder within , and file name, all three separated by colons (:)/views/

To find out more about the way of referencing template files placed in bundles, see Refer
 in Symfony documentation.encing Templates in a Bundle

pagelayout.html.twig

child.html.twig

Alternatively, you can place templates inside one another using the function. include

See for detailed documentation on how tohttp://twig.sensiolabs.org/doc/templates.html#
use Twig.

http://twig.sensiolabs.org/doc/functions/block.html
https://doc.ez.no/display/DEVELOPER/Content+Rendering#ContentRendering-Reference
https://doc.ez.no/display/DEVELOPER/Content+Rendering#ContentRendering-ez_render_field
http://symfony.com/doc/current/book/templating.html#referencing-templates-in-a-bundle
http://symfony.com/doc/current/book/templating.html#referencing-templates-in-a-bundle
http://twig.sensiolabs.org/doc/functions/include.html
http://twig.sensiolabs.org/doc/templates.html

{{ ez_render_field(
 content,
 'description',
 { 'template':
'AppBundle:fields:description.html.twig' }
) }}

Another way of embedding Content items is using the function (which is not anrender_esi
eZ-specific function, but a Symfony standard). This function lets you easily select a different
Content item and embed it in the current page. This can be used, for instance, if you want to list the
children of a Content item in its parent.

{{ render_esi(controller('ez_content:viewAction',
{locationId: 33, viewType: 'line'})) }}

This example renders the Content item with Location ID 33 using the line view. To do this, the
function applies the 'ez_content:viewAction' controller. This is the default controller for rendering
content, but can be substituted here with any custom controller of your choice.

Assets

Asset files such as CSS stylesheets, JS scripts or image files can be defined in the templates and
need to be included in the directory structure in the same way as with any other web project.
Assets are placed in the folder in your installation.web/

Instead of linking to stylesheets or embedding images like usually, you can use the function. asset

Controller

While it is absolutely possible to template a whole website using only Twig, a custom PHP
controller gives many more options of customizing the behavior of the pages.

See for more information.Custom controllers

Usage

Creating a new design using Bundle Inheritance

Due to the fact that eZ Platform is built using the Symfony 2 framework, it is possible to benefit
from most of its stock features such as Bundle Inheritance. To learn more about this concept in
general, check out the .related Symfony documentation

Bundle Inheritance allows you to customize a template from a parent bundle. This is very
convenient when creating a custom design for an already existing piece of code.

The following example shows how to create a customized version of a template from the
DemoBundle.

Creating a bundle

Create a new bundle to host your design using the dedicated command (from your app
installation):

As you can see in the case above, templates can be created not only for whole pages,
but also for individual Fields.

http://symfony.com/doc/current/book/templating.html#linking-to-assets
https://doc.ez.no/display/DEVELOPER/Content+Rendering#ContentRendering-Customcontrollers
http://symfony.com/doc/current/cookbook/bundles/override.html

php app/console generate:bundle

Configuring bundle to inherit from another

Following the related , modify your bundle to make it inherit from theSymfony documentation
"eZDemoBundle". Then copy a template from the DemoBundle in the new bundle, following the
same directory structure. Customize this template, clear application caches and reload the page.
You custom design should be available.

Known limitation

If you are experiencing problems with routes not working after adding your bundle, take a look at thi
.s issue

Reference

Twig Helper

eZ Platform comes with a Twig helper as a named .global variable ezpublish

This helper is accessible from all Twig templates and allows you to easily retrieve useful
information.

Property Description

ezpublish.siteaccess Returns the current siteaccess.

ezpublish.rootLocation Returns the root Location object

ezpublish.requestedUriString Returns the requested URI string (also known
as semanticPathInfo).

ezpublish.systemUriString Returns the "system" URI string. System URI
is the URI for internal content controller. If
current route is not an URLAlias, then the
current Pathinfo is returned.

ezpublish.viewParameters Returns the view parameters as a hash.

ezpublish.viewParametersString Returns the view parameters as a string.

ezpublish.legacy Returns legacy information.

ezpublish.translationSiteAccess Returns the translation SiteAccess for a given
language, or null if it cannot be found.

ezpublish.availableLanguages Returns the list of available languages.

ezpublish.configResolver Returns the config resolver.

Legacy

The property returns an object of type , which is a containerezpublish.legacy ParameterBag
for key/value pairs, and contains additional properties to retrieve/handle legacy information.

Property Description

ezpublish.legacy is only available (e.g.when viewing content in legacy fallback
no corresponding Twig templates)

http://symfony.com/doc/current/cookbook/bundles/inheritance.html
https://jira.ez.no/browse/EZP-23575
https://jira.ez.no/browse/EZP-23575
http://symfony.com/doc/master/cookbook/templating/global_variables.html
http://api.symfony.com/2.8/Symfony/Component/HttpFoundation/ParameterBag.html

ezpublish.legacy.all Returns all the parameters, with all the
contained information.

ezpublish.legacy.keys Returns the parameter keys only.

ezpublish.legacy.get Returns a parameter by name.

ezpublish.legacy.has Returns true if the parameter is defined.

Listing the available parameters

You can list the available parameters in by using the ezpublish.legacy ezpublish.legacy.
 property, as shown in the following example:keys

{{ dump(ezpublish.legacy.keys()) }}

which will give a result similar to:

array
 0 => string 'view_parameters' (length=15)
 1 => string 'path' (length=4)
 2 => string 'title_path' (length=10)
 3 => string 'section_id' (length=10)
 4 => string 'node_id' (length=7)
 5 => string 'navigation_part' (length=15)
 6 => string 'content_info' (length=12)
 7 => string 'template_list' (length=13)
 8 => string 'cache_ttl' (length=9)
 9 => string 'is_default_navigation_part'
(length=26)
 10 => string 'css_files' (length=9)
 11 => string 'js_files' (length=8)
 12 => string 'css_files_configured'
(length=20)
 13 => string 'js_files_configured'
(length=19)

Retrieving legacy information

Legacy information is accessible by using the property, which will allowezpublish.legacy.get
you to access all data contained in , from the legacy kernel.$module_result

This allows you to import information directly into twig templates. For more details please check the
available examples on using the property for retrieving ezpublish.legacy.get persistent

 and .variables assets

As a usage example, if you want to access the legacy information related to 'content_info' you can
do it, as shown in the following example:

Example on retrieving the available parameters under

ezpublish.legacy

http://doc.ez.no/eZ-Publish/Technical-manual/4.x/Templates/The-pagelayout/Variables-in-pagelayout#module_result
https://confluence.ez.no/display/EZP/Legacy+template+fallback#Legacytemplatefallback-Persistentvariable
https://confluence.ez.no/display/EZP/Legacy+template+fallback#Legacytemplatefallback-Persistentvariable
https://confluence.ez.no/display/EZP/Legacy+template+fallback#Legacytemplatefallback-Assets

{{ ezpublish.legacy.get('content_info') }}

The previous call will return the contents on the 'content_info' as an , and if we it thearray dump
result will be similar to the following:

Example on accessing 'content_info' under

ezpublish.legacy

array
 'object_id' => string '57' (length=2)
 'node_id' => string '2' (length=1)
 'parent_node_id' => string '1' (length=1)
 'class_id' => string '23' (length=2)
 'class_identifier' => string 'landing_page'
(length=12)
 'remote_id' => string
'8a9c9c761004866fb458d89910f52bee' (length=32)
 'node_remote_id' => string
'f3e90596361e31d496d4026eb624c983' (length=32)
 'offset' => boolean false
 'viewmode' => string 'full' (length=4)
 'navigation_part_identifier' => string
'ezcontentnavigationpart' (length=23)
 'node_depth' => string '1' (length=1)
 'url_alias' => string '' (length=0)
 'current_language' => string 'eng-GB'
(length=6)
 'language_mask' => string '3' (length=1)
 'main_node_id' => string '2' (length=1)
 'main_node_url_alias' => boolean false
 'persistent_variable' =>
 array
 'css_files' =>
 array
 0 => string 'video.css' (length=9)
 'js_files' =>
 array
 0 => string 'video.js' (length=8)
 'class_group' => boolean false
 'state' =>
 array
 2 => string '1' (length=1)
 'state_identifier' =>
 array
 0 => string 'ez_lock/not_locked'
(length=18)
 'parent_class_id' => string '1' (length=1)
 'parent_class_identifier' => string 'folder'
(length=6)
 'parent_node_remote_id' => string
'629709ba256fe317c3ddcee35453a96a' (length=32)
 'parent_object_remote_id' => string
'e5c9db64baadb82ab8db54f0e2192ec3' (length=32)

Additionally, for retrieving information contained in 'content_info' such as the current language of
the content in the page you can do it like in the following example:

{{
ezpublish.legacy.get('content_info')['current_language']
}}

Example on retrieving 'current_language'

	Design

