
Public API basics

eZ Platform API Repository

This entity is the entry point to everything you will do with the Public API.

It will allow you to create, retrieve, update and delete all the eZ Platform objects, as well as Content Types, Sections, Content states. It is always
obtained through the service container.

/** @var $repository \eZ\Publish\API\Repository\Repository
$repository = $container->get('ezpublish.api.repository');

 By itself, the repository doesn't do much. It allows three types of operations: user authentication (getting / changing the current user), issuing
transactions, and obtaining services.

The service container

The above code snippet implies that the is available in the context you are writing your code in.service container

In controllers, this generally is done by extending the Symfony class. It comes with a method that calls the service Controller get()
container. In command line scripts, it requires that you extend the base class instead of . This class ContainerAwareCommand Controller
provides you with a method that returns the service container.getContainer()

Authentication

One of the responsibilities of the Repository is user authentication. Every action will be executed a user. In the context of a normal eZ Platformas
execution, the logged in user will of course be the current one, identified via one of the available authentication methods. This user's permissions
will affect the behavior of the Repository. The user may for example not be allowed to create Content, or view a particular Section.

Logging in to the Repository is covered in other recipes of the Cookbook.

Services

The main entry point to the repository's features are services. The Public API breaks down access to Content, User, Content Types and other
features into various services. Those services are obtained via the , using [ServiceName] methods: Repository get () getContentService()
, , etc. getUserService()

Throughout the Cookbook, you will be guided through the various capabilities those services have, and how you can use them to implement your
projects.

Value objects

While Services provide interaction with the repository, the elements (Content, Users) they provide interaction with are provided as read-only Value
 in the namespace. Those objects are broken down into sub-namespaces: , Objects eZ\Publish\Core\Repository\Values Content Conte
, and , each sub-namespace containing a set of value objects, such as or .ntType User ObjectState Content\Content User\Role

Obtaining the eZ Platform Repository via the service container

Inline objects documentation
Pay attention to the inline phpdoc block in this code stub. It tells your IDE that is an instance of $repository \eZ\Publish\API\Re

. If your IDE supports this feature, you will get code completion on the object. This helper is a pository\Repository $repository
huge time saver when it comes to learning about the eZ Platform API.

Getting the repository from eZ Platform controllers
In order to make it even easier to obtain the repository from controllers code, eZ Platform controllers extend a custom classController
that provides a method which directly returns the repository from the service container. getRepository()

You can and should of course do the same in your custom controllers.

http://symfony.com/doc/2.0/book/service_container.html
http://api.symfony.com/2.0/Symfony/Bundle/FrameworkBundle/Controller/Controller.html
http://api.symfony.com/2.1/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_get
http://api.symfony.com/2.1/Symfony/Bundle/FrameworkBundle/Command/ContainerAwareCommand.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Repository.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Repository.html#method_getContentService
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Repository.html#method_getUserService
http://apidoc.ez.no/doxygen/trunk/NS/html/namespaceeZ_1_1Publish_1_1Core_1_1Repository_1_1Values.html
http://apidoc.ez.no/doxygen/trunk/NS/html/namespaceeZ_1_1Publish_1_1Core_1_1Repository_1_1Values.html
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/Content/Content.php
https://github.com/ezsystems/ezp-next/blob/master/eZ/Publish/Core/Repository/Values/User/Role.php
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Repository.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Publish/API/Repository/Repository.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Bundle/EzPublishCoreBundle/Controller.html
http://apidoc.ez.no/sami/trunk/NS/html/eZ/Bundle/EzPublishCoreBundle/Controller.html#method_getRepository

These objects are read-only by design. They are only meant to be used in order to fetch data from the repository. They come with their own
properties, such as , , but also with methods that provide access to more related information, such as $content->id $location->hidden Rel

 or . By design, a value object will only give you access to data that is veryation::getSourceContentInfo() Role::getPolicies()
closely related to it. More complex retrieval operations will require you to use the appropriate Service, using information from your Value Object.

Value info objects

Some complex Value Objects have an counterpart, like , the counterpart for . These objects are specific andInfo ContentInfo Content
provide you with lower-level information. For instance, will provide you with or , while wiContentInfo currentVersionNo remoteId Content
ll let you retrieve Fields, the Content Type, or previous Versions.

They are provided by the API, but are , can't be modified and sent back. Creation and modification of Repository values is done usingread only
Create structs and Update structs.

Create and update structs

In order to update or create elements in the Repository, you will use structs. They are usually provided by the Service that manages the Value
Objects you want to alter or create. For instance, the Content service has a method that returns a new getContentCreateStruct() Content

 object. Equivalent methods exist for UpdateStruct objects as well, and for most Value Objects.CreateStruct

Using them is also covered in the Cookbook.

	Public API basics

